SecretFlow中联邦学习模型贡献评估的技术实现
在联邦学习场景下,数据贡献评估是一个关键的技术挑战。SecretFlow作为隐私计算框架,提供了基于特征重要性的数据贡献评估方法,这对于理解各参与方数据对联合模型的贡献程度具有重要意义。
特征重要性评估原理
SecretFlow通过分析模型训练过程中各特征的分裂增益来评估特征重要性。在梯度提升树(SGB)算法中,每次特征分裂带来的信息增益会被记录并累加,最终形成各特征的重要性评分。这种方法能够客观反映不同特征对模型预测能力的贡献程度。
技术实现细节
在SecretFlow的SGB实现中,特征重要性评估主要通过以下几个步骤完成:
-
训练过程记录:在每棵决策树的构建过程中,算法会记录每个特征被选为分裂节点时带来的信息增益。
-
重要性计算:将所有树中同一特征带来的信息增益进行累加,得到该特征的总重要性分数。
-
归一化处理:将所有特征的重要性分数进行归一化,使得各特征的重要性可以相互比较。
-
结果输出:最终输出各特征的重要性排序,供数据分析人员参考。
应用场景与价值
特征重要性评估在联邦学习中具有多重价值:
-
模型可解释性:帮助理解模型依赖哪些特征做出预测,增强模型透明度。
-
数据价值评估:为数据定价、数据交易提供量化依据。
-
特征选择:识别并移除对模型贡献小的冗余特征,提高模型效率。
-
协作激励:为联邦学习参与方提供数据贡献的量化证明,促进协作。
未来发展方向
SecretFlow团队表示将在后续版本中加强这一功能,可能的改进方向包括:
-
更精细的贡献评估:不仅评估特征级别,还可能细化到样本级别。
-
可视化支持:提供直观的贡献度可视化工具。
-
多维度评估:结合特征重要性和数据质量等多维度指标。
-
标准化输出:提供统一的贡献评估报告格式。
总结
SecretFlow当前通过特征重要性分析为联邦学习参与者提供了初步的数据贡献评估能力。随着功能的不断完善,这将为隐私保护下的数据协作提供更加科学、透明的价值评估体系,对推动数据要素市场化具有重要意义。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00