NILM-EVAL 开源项目使用教程
1. 项目介绍
NILM-EVAL 是一个用于评估非侵入式负载监控(Non-Intrusive Load Monitoring, NILM)算法的 MATLAB 框架。该框架允许在不同场景下评估 NILM 算法,以全面了解其性能。NILM-EVAL 使得在多个数据集、家庭、数据粒度、时间段和特定算法参数上评估算法变得容易。通过将这些参数封装在配置中,NILM-EVAL 进一步允许用户轻松重复他人的实验,评估算法在新数据集上的表现,并微调配置以在新设置中提高算法的性能。
2. 项目快速启动
2.1 环境准备
确保你已经安装了 MATLAB 环境。如果没有安装,请访问 MathWorks 官网 下载并安装。
2.2 克隆项目
首先,克隆 NILM-EVAL 项目到本地:
git clone https://github.com/beckel/nilm-eval.git
2.3 运行示例
进入项目目录并运行示例脚本:
cd nilm-eval/Matlab
matlab -r "run('example_script.m');"
2.4 自定义配置
你可以通过修改配置文件来调整评估参数,例如数据集、时间周期、算法参数等。配置文件通常位于 configs 目录下。
% 示例配置文件
dataset = 'ECO';
granularity = 60; % 数据粒度为60秒
household = 1;
lratio = 0.5;
3. 应用案例和最佳实践
3.1 案例1:家庭能源管理
NILM-EVAL 可以用于评估不同 NILM 算法在家庭能源管理中的表现。通过分析家庭总电力消耗数据,NILM 算法可以识别出各个电器的能耗情况,从而帮助家庭用户优化能源使用。
3.2 案例2:智能电网优化
在智能电网中,NILM 技术可以帮助电网运营商实时监控和优化电力分配。通过 NILM-EVAL 框架,可以评估不同算法在不同电网条件下的性能,选择最适合的算法进行部署。
3.3 最佳实践
- 数据预处理:在使用 NILM-EVAL 之前,确保数据已经过适当的预处理,包括缺失值填充、噪声过滤等。
- 算法选择:根据具体应用场景选择合适的 NILM 算法,并使用 NILM-EVAL 进行性能评估。
- 参数调优:通过调整算法参数和配置文件,优化算法在特定数据集上的表现。
4. 典型生态项目
4.1 NILMTK
NILMTK(Non-Intrusive Load Monitoring Toolkit)是一个用于非侵入式负载监控的开源 Python 工具包。它提供了丰富的数据处理和算法实现,可以与 NILM-EVAL 结合使用,进一步扩展 NILM 研究的能力。
4.2 ECO 数据集
ECO 数据集(Electricity Consumption and Occupancy)是由 ETH Zurich 和 Energie Thun 合作收集的,用于评估 NILM 算法。NILM-EVAL 框架内置了对 ECO 数据集的支持,可以直接用于算法评估。
4.3 PlatEMO
PlatEMO 是一个用于进化多目标优化的 MATLAB 平台。它可以与 NILM-EVAL 结合,用于评估和优化多目标 NILM 算法。
通过以上模块的介绍和实践,你可以快速上手并深入使用 NILM-EVAL 项目,进行非侵入式负载监控算法的评估和优化。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00