NILM-EVAL 开源项目使用教程
1. 项目介绍
NILM-EVAL 是一个用于评估非侵入式负载监控(Non-Intrusive Load Monitoring, NILM)算法的 MATLAB 框架。该框架允许在不同场景下评估 NILM 算法,以全面了解其性能。NILM-EVAL 使得在多个数据集、家庭、数据粒度、时间段和特定算法参数上评估算法变得容易。通过将这些参数封装在配置中,NILM-EVAL 进一步允许用户轻松重复他人的实验,评估算法在新数据集上的表现,并微调配置以在新设置中提高算法的性能。
2. 项目快速启动
2.1 环境准备
确保你已经安装了 MATLAB 环境。如果没有安装,请访问 MathWorks 官网 下载并安装。
2.2 克隆项目
首先,克隆 NILM-EVAL 项目到本地:
git clone https://github.com/beckel/nilm-eval.git
2.3 运行示例
进入项目目录并运行示例脚本:
cd nilm-eval/Matlab
matlab -r "run('example_script.m');"
2.4 自定义配置
你可以通过修改配置文件来调整评估参数,例如数据集、时间周期、算法参数等。配置文件通常位于 configs 目录下。
% 示例配置文件
dataset = 'ECO';
granularity = 60; % 数据粒度为60秒
household = 1;
lratio = 0.5;
3. 应用案例和最佳实践
3.1 案例1:家庭能源管理
NILM-EVAL 可以用于评估不同 NILM 算法在家庭能源管理中的表现。通过分析家庭总电力消耗数据,NILM 算法可以识别出各个电器的能耗情况,从而帮助家庭用户优化能源使用。
3.2 案例2:智能电网优化
在智能电网中,NILM 技术可以帮助电网运营商实时监控和优化电力分配。通过 NILM-EVAL 框架,可以评估不同算法在不同电网条件下的性能,选择最适合的算法进行部署。
3.3 最佳实践
- 数据预处理:在使用 NILM-EVAL 之前,确保数据已经过适当的预处理,包括缺失值填充、噪声过滤等。
- 算法选择:根据具体应用场景选择合适的 NILM 算法,并使用 NILM-EVAL 进行性能评估。
- 参数调优:通过调整算法参数和配置文件,优化算法在特定数据集上的表现。
4. 典型生态项目
4.1 NILMTK
NILMTK(Non-Intrusive Load Monitoring Toolkit)是一个用于非侵入式负载监控的开源 Python 工具包。它提供了丰富的数据处理和算法实现,可以与 NILM-EVAL 结合使用,进一步扩展 NILM 研究的能力。
4.2 ECO 数据集
ECO 数据集(Electricity Consumption and Occupancy)是由 ETH Zurich 和 Energie Thun 合作收集的,用于评估 NILM 算法。NILM-EVAL 框架内置了对 ECO 数据集的支持,可以直接用于算法评估。
4.3 PlatEMO
PlatEMO 是一个用于进化多目标优化的 MATLAB 平台。它可以与 NILM-EVAL 结合,用于评估和优化多目标 NILM 算法。
通过以上模块的介绍和实践,你可以快速上手并深入使用 NILM-EVAL 项目,进行非侵入式负载监控算法的评估和优化。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00