slime 的项目扩展与二次开发
2025-06-20 22:22:43作者:贡沫苏Truman
项目的基础介绍
slime 是一个面向大型语言模型(LLM)的后训练框架,旨在实现强化学习(RL)的扩展。它提供了高效训练和灵活数据生成的工作流程,使得研究人员和开发人员可以更加便捷地对大型语言模型进行进一步的训练和优化。
项目的核心功能
slime 的核心功能主要包括:
- 高性能训练:通过连接 Megatron 和 SGLang,支持各种模式下的高效训练。
- 灵活的数据生成:通过自定义数据生成接口和基于服务器的引擎,支持任意的训练数据生成工作流程。
项目使用了哪些框架或库?
slime 项目主要使用了以下框架或库:
- Megatron:用于主训练过程的深度学习框架。
- SGLang:用于生成新数据(包括奖励/验证器输出)的强化学习框架。
- Docker:用于容器化应用,提供统一的运行环境。
项目的代码目录及介绍
项目的代码目录结构如下:
- docker/:包含 Docker 相关的配置和脚本。
- docs/:存放项目的文档资料。
- imgs/:存放项目的图片资源。
- scripts/:存放项目的脚本文件。
- slime/:核心代码目录,包含项目的核心实现。
- slime_plugins/:扩展插件目录。
- tools/:辅助工具目录,如模型格式转换工具等。
- .gitignore:指定 Git 忽略的文件。
- pre-commit-config.yaml:配置 pre-commit 插件。
- LICENSE:项目许可证文件。
- README.md:项目说明文件。
- pyproject.toml:项目配置文件。
- requirements.txt:项目依赖文件。
- setup.py:项目安装脚本。
- train.py:训练脚本。
对项目进行扩展或者二次开发的方向
- 增加新的数据生成策略:根据不同的应用场景,开发新的数据生成策略,以提供更丰富的训练数据。
- 集成更多强化学习算法:将更多的强化学习算法集成到框架中,提供更广泛的算法选择。
- 优化训练性能:通过优化现有算法和实现,提高训练的性能和效率。
- 扩展模型支持:支持更多类型的语言模型,包括不同大小和结构的模型。
- 增加可视化工具:开发可视化工具,帮助用户更好地理解和分析训练过程。
- 强化错误处理和异常管理:提高项目的鲁棒性,确保在不同情况下都能稳定运行。
登录后查看全文
热门项目推荐
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen-Image暂无简介Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0256Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
1 freeCodeCamp论坛排行榜项目中的错误日志规范要求2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp Cafe Menu项目中link元素的void特性解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析8 freeCodeCamp课程页面空白问题的技术分析与解决方案9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🤖一个基于 WeChaty 结合 DeepSeek / ChatGPT / Kimi / 讯飞等Ai服务实现的微信机器人 ,可以用来帮助你自动回复微信消息,或者管理微信群/好友,检测僵尸粉等。
JavaScript
181
22

unibest - 最好用的 uniapp 开发框架。unibest 是由 uniapp + Vue3 + Ts + Vite5 + UnoCss + WotUI 驱动的跨端快速启动模板,使用 VS Code 开发,具有代码提示、自动格式化、统一配置、代码片段等功能,同时内置了大量平时开发常用的基本组件,开箱即用,让你编写 uniapp 拥有 best 体验。
TypeScript
26
2

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
791
484

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
321
1.05 K

⚡️充电桩Saas云平台⚡️完整源代码,包含模拟桩模块,可通过docker编排快速部署测试。技术栈:SpringCloud、MySQL、Redis、RabbitMQ,前后端管理系统(管理后台、小程序),支持互联互通协议、市政协议、一对多方平台支持。支持高并发业务、业务动态伸缩、桩通信负载均衡(NLB)。
Java
35
15

RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。
Java
164
45

小兔鲜儿-vue3+ts-uniapp
项目已上线,小程序搜索《小兔鲜儿》即可体验。🎉🎉🎉
<br/>
配套项目接口文档,配套笔记。
TypeScript
19
1

React Native鸿蒙化仓库
C++
160
249

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
383
366

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
563
48