在Supervision项目中正确绘制边界框和标签的注意事项
2025-05-07 00:07:10作者:范垣楠Rhoda
概述
在使用Supervision项目进行图像标注时,开发者可能会遇到边界框和标签无法正常显示的问题。本文将深入分析这一常见问题的原因,并提供解决方案。
问题现象
当使用Supervision库进行图像标注时,开发者可能会发现:
- 边界框(BoundingBox)无法显示
- 对象标签(Label)不出现
- 没有错误提示,但标注结果不符合预期
根本原因分析
经过技术分析,这类问题通常由以下原因导致:
-
图像对象复用问题:开发者可能在同一个原始图像对象上多次进行不同的标注操作,导致前一次标注结果被覆盖。
-
标注顺序不当:不同标注器(annotator)的执行顺序会影响最终结果。
-
图像数据拷贝问题:没有正确处理图像的深拷贝,导致标注操作相互影响。
解决方案
正确的标注流程
- 创建图像副本:每次标注前都应创建图像的独立副本
annotated_image = image.copy()
- 按顺序应用标注器:先应用边界框标注器,再应用标签标注器
annotated_image = box_annotator.annotate(annotated_image, detections=detections)
annotated_image = label_annotator.annotate(annotated_image, detections=detections)
- 避免重复使用同一图像对象:每个标注步骤都应使用新的图像副本
完整示例代码
import numpy as np
import supervision as sv
# 创建空白图像
image = np.zeros((1000, 1000, 3), dtype=np.uint8)
# 定义检测结果
detections = sv.Detections(
xyxy=np.array([
[362, 83, 400, 117],
[1095, 314, 1205, 406]
]),
class_id=np.array([0, 1])
)
# 初始化标注器
box_annotator = sv.BoundingBoxAnnotator()
label_annotator = sv.LabelAnnotator(text_color=sv.Color.BLACK)
# 标注流程
annotated_image = image.copy()
annotated_image = box_annotator.annotate(annotated_image, detections=detections)
annotated_image = label_annotator.annotate(annotated_image, detections=detections)
最佳实践建议
-
保持标注步骤独立:每个标注步骤都应从原始图像开始,避免标注器之间的相互影响。
-
合理规划标注顺序:先绘制区域(Zone),再绘制边界框,最后添加标签,确保所有标注内容都能清晰可见。
-
使用深拷贝:在Python中,对于NumPy数组要特别注意使用copy()方法创建真正的副本,而不是视图(view)。
-
调试技巧:可以分步保存中间结果图像,帮助定位问题发生的具体步骤。
总结
在Supervision项目中进行图像标注时,正确处理图像对象的复制和标注顺序是关键。通过遵循本文介绍的最佳实践,开发者可以避免常见的标注显示问题,确保所有标注元素都能正确呈现在最终图像上。记住,每个标注步骤都应视为一个独立的图像处理流程,从原始图像开始并产生新的输出,这样才能保证标注效果的叠加不会相互干扰。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26