在Supervision项目中正确绘制边界框和标签的注意事项
2025-05-07 08:41:40作者:范垣楠Rhoda
概述
在使用Supervision项目进行图像标注时,开发者可能会遇到边界框和标签无法正常显示的问题。本文将深入分析这一常见问题的原因,并提供解决方案。
问题现象
当使用Supervision库进行图像标注时,开发者可能会发现:
- 边界框(BoundingBox)无法显示
- 对象标签(Label)不出现
- 没有错误提示,但标注结果不符合预期
根本原因分析
经过技术分析,这类问题通常由以下原因导致:
-
图像对象复用问题:开发者可能在同一个原始图像对象上多次进行不同的标注操作,导致前一次标注结果被覆盖。
-
标注顺序不当:不同标注器(annotator)的执行顺序会影响最终结果。
-
图像数据拷贝问题:没有正确处理图像的深拷贝,导致标注操作相互影响。
解决方案
正确的标注流程
- 创建图像副本:每次标注前都应创建图像的独立副本
annotated_image = image.copy()
- 按顺序应用标注器:先应用边界框标注器,再应用标签标注器
annotated_image = box_annotator.annotate(annotated_image, detections=detections)
annotated_image = label_annotator.annotate(annotated_image, detections=detections)
- 避免重复使用同一图像对象:每个标注步骤都应使用新的图像副本
完整示例代码
import numpy as np
import supervision as sv
# 创建空白图像
image = np.zeros((1000, 1000, 3), dtype=np.uint8)
# 定义检测结果
detections = sv.Detections(
xyxy=np.array([
[362, 83, 400, 117],
[1095, 314, 1205, 406]
]),
class_id=np.array([0, 1])
)
# 初始化标注器
box_annotator = sv.BoundingBoxAnnotator()
label_annotator = sv.LabelAnnotator(text_color=sv.Color.BLACK)
# 标注流程
annotated_image = image.copy()
annotated_image = box_annotator.annotate(annotated_image, detections=detections)
annotated_image = label_annotator.annotate(annotated_image, detections=detections)
最佳实践建议
-
保持标注步骤独立:每个标注步骤都应从原始图像开始,避免标注器之间的相互影响。
-
合理规划标注顺序:先绘制区域(Zone),再绘制边界框,最后添加标签,确保所有标注内容都能清晰可见。
-
使用深拷贝:在Python中,对于NumPy数组要特别注意使用copy()方法创建真正的副本,而不是视图(view)。
-
调试技巧:可以分步保存中间结果图像,帮助定位问题发生的具体步骤。
总结
在Supervision项目中进行图像标注时,正确处理图像对象的复制和标注顺序是关键。通过遵循本文介绍的最佳实践,开发者可以避免常见的标注显示问题,确保所有标注元素都能正确呈现在最终图像上。记住,每个标注步骤都应视为一个独立的图像处理流程,从原始图像开始并产生新的输出,这样才能保证标注效果的叠加不会相互干扰。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120