Codespeed 技术文档
1. 安装指南
Codespeed 是一个用于监控和分析代码性能的 Web 应用程序。在安装 Codespeed 之前,您需要确保您的系统安装了 Python 2.7 或 3.5 以上版本。
安装依赖项和 Codespeed Django 应用:
pip install codespeed
如果您需要版本控制集成,还需要安装以下额外依赖:
- Subversion 需要
python-svn
- Mercurial 需要
mercurial
包以本地克隆仓库 - git 需要
git
包 - 对于 Github,需要
isodate
包,但不需要 git:pip install isodate
注意:对于 git 或 mercurial 仓库,第一次访问更改视图时,Codespeed 将尝试克隆仓库,这可能需要很长时间,请耐心等待。
- 下载最新稳定版本的 Codespeed,从 github.com/tobami/codespeed/tags 解压并使用
python setup.py install
安装。 - 要开始使用,您可以将
sample_project
目录作为 Django 项目的起点,通过编辑sample_project/settings.py
进行配置。 - 为了简化操作,您可以使用默认的 sqlite 配置,这将数据保存到名为
data.db
的数据库中。 - 通过在根目录输入以下命令创建数据库:
python manage.py migrate
- 创建管理员用户:
python manage.py createsuperuser
- 为了测试目的,您可以启动开发服务器:
python manage.py runserver 8000
安装完成后,您可以通过访问 http://localhost:8000/
来使用 Codespeed。
注意:在生产环境中,您应该配置一个真实的 Web 服务器,如 Apache 或 nginx(请参阅 Django 文档)。您还应该修改 sample_project/settings.py
并设置 DEBUG = False
。
2. 项目的使用说明
要使用 Codespeed,您需要先进行一些配置:
使用提供的测试数据
如果您想测试 Codespeed,可以使用 testdata.json
固件来获得一个可用的数据集。
./manage.py loaddata codespeed/fixtures/testdata.json
从头开始
在您可以保存(并显示)数据之前,您需要先创建一个环境和默认项目。
- 访问
http://localhost:8000/admin/codespeed/environment/
创建环境。 - 访问
http://localhost:8000/admin/codespeed/project/
创建项目。
在 "Track changes" 字段上打勾,并根据需要配置版本控制的有关字段。
注意:只有在 "Track changes" 字段勾选的项目中关联的执行文件才会在更改和时间线视图中显示。
注意:Git 和 Mercurial 需要在本地克隆仓库。这意味着您的 sample_project/repos
目录需要由服务器所有。在典型的 Apache 安装中,您需要运行以下命令:
sudo chown www-data:www-data sample_project/repos
3. 项目 API 使用文档
要保存数据,您需要通过 POST 请求发送到 http://localhost:8000/result/add/
。
您可以使用 tools/save_single_result.py
脚本作为参考。在保存大量数据时,建议使用 JSON API:
http://localhost:8000/result/add/json/
一个示例脚本位于 tools/save_multiple_results.py
。
注意:如果提供的执行文件、基准、项目或修订版本不存在,它们将被自动创建,包括实际结果条目。唯一不会自动创建的模型是环境。环境必须始终存在,否则数据将不会被保存(这就是为什么在之前的 "Codespeed 配置" 部分将其描述为必要步骤的原因)。
4. 项目安装方式
请遵循以下步骤以安装 Codespeed:
- 使用
pip
安装 Codespeed 及其依赖项。 - 下载并解压 Codespeed 的稳定版本。
- 运行
python setup.py install
来安装 Codespeed。 - 配置 Django 项目,使用
sample_project/settings.py
文件。 - 创建数据库、管理员用户并启动开发服务器。
完成这些步骤后,您就可以通过浏览器访问 Codespeed 并开始使用了。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0107DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









