MSTICPy扩展:增强Sentinel告警属性获取能力
2025-07-07 12:36:11作者:董灵辛Dennis
背景介绍
在安全运营中心(SOC)的日常工作中,Microsoft Sentinel作为云原生SIEM解决方案,其告警和事件管理功能至关重要。MSTICPy作为微软开源的威胁情报和安全分析工具包,提供了与Sentinel集成的能力,使安全分析师能够更高效地处理安全事件。
问题发现
在使用MSTICPy获取Sentinel事件关联告警时,发现当前实现存在一个功能限制:当通过get_incident
方法设置alerts=True
参数时,返回的告警信息仅包含ID和Name两个字段,而实际API响应中包含的丰富属性信息被丢弃了。
技术分析
深入分析MSTICPy源代码发现,在sentinel_incidents.py
文件中,处理告警数据的逻辑确实只提取了系统告警ID和显示名称。然而,Sentinel API返回的告警对象包含更多有价值的属性,特别是ExtendedProperties字段,其中存储了查询语句、查询时间范围等关键信息。
这些扩展属性对于安全分析具有重要价值:
- 查询语句:可以直接获取触发告警的KQL查询
- 时间范围:包含查询的开始和结束时间UTC
- 其他上下文:可能包含实体映射、严重性评分等辅助分析的信息
解决方案实现
针对这一限制,社区贡献者提出了两种改进思路:
- 扩展现有参数功能:修改
alerts
参数,使其不仅能接受布尔值,还可以接受字符串值如"full"来指定返回完整告警详情 - 新增专用参数:添加
all_alert_details=True
参数来明确控制是否返回完整告警对象
实际实现采用了更直接的方案:在保持现有接口兼容性的前提下,将所有告警属性完整保留,放入一个名为"AlertProperties"的字段中。这种设计既不会破坏现有代码,又提供了访问完整告警数据的途径。
技术实现细节
改进后的告警数据处理逻辑如下:
{
"ID": alert["properties"]["systemAlertId"],
"Name": alert["properties"]["alertDisplayName"],
"AlertProperties": alert["properties"]
}
这种结构化的处理方式使得:
- 原有依赖ID和Name字段的代码不受影响
- 需要深入分析的安全团队可以通过AlertProperties访问所有原始属性
- 保持了数据的完整性和一致性
应用场景示例
获取完整告警属性后,安全团队可以实现更高级的分析功能,例如:
# 获取事件关联的所有告警
incident_alerts = sentinel.get_incident(incident_id, alerts=True)
for alert in incident_alerts:
# 访问基础属性
print(f"告警名称: {alert['Name']}")
# 访问完整属性
ext_props = json.loads(alert['AlertProperties']['ExtendedProperties'])
query = ext_props.get('Query')
start_time = ext_props.get('Query Start Time UTC')
end_time = ext_props.get('Query End Time UTC')
# 使用原始查询和时间范围进行深入分析
print(f"触发查询: {query}")
print(f"时间范围: {start_time} 至 {end_time}")
总结
MSTICPy对Sentinel告警属性获取能力的增强,显著提升了安全分析工作的效率和深度。这一改进使得安全团队能够:
- 直接获取告警的完整上下文信息
- 基于原始查询进行更精确的事件调查
- 减少额外API调用的需求,提高分析效率
- 保持与现有工作流程的兼容性
这一功能增强现已合并到主分支,将在下一版本中发布,为安全社区提供更强大的Sentinel集成能力。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
209
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194