MSTICPy扩展:增强Sentinel告警属性获取能力
2025-07-07 19:42:59作者:董灵辛Dennis
背景介绍
在安全运营中心(SOC)的日常工作中,Microsoft Sentinel作为云原生SIEM解决方案,其告警和事件管理功能至关重要。MSTICPy作为微软开源的威胁情报和安全分析工具包,提供了与Sentinel集成的能力,使安全分析师能够更高效地处理安全事件。
问题发现
在使用MSTICPy获取Sentinel事件关联告警时,发现当前实现存在一个功能限制:当通过get_incident方法设置alerts=True参数时,返回的告警信息仅包含ID和Name两个字段,而实际API响应中包含的丰富属性信息被丢弃了。
技术分析
深入分析MSTICPy源代码发现,在sentinel_incidents.py文件中,处理告警数据的逻辑确实只提取了系统告警ID和显示名称。然而,Sentinel API返回的告警对象包含更多有价值的属性,特别是ExtendedProperties字段,其中存储了查询语句、查询时间范围等关键信息。
这些扩展属性对于安全分析具有重要价值:
- 查询语句:可以直接获取触发告警的KQL查询
- 时间范围:包含查询的开始和结束时间UTC
- 其他上下文:可能包含实体映射、严重性评分等辅助分析的信息
解决方案实现
针对这一限制,社区贡献者提出了两种改进思路:
- 扩展现有参数功能:修改
alerts参数,使其不仅能接受布尔值,还可以接受字符串值如"full"来指定返回完整告警详情 - 新增专用参数:添加
all_alert_details=True参数来明确控制是否返回完整告警对象
实际实现采用了更直接的方案:在保持现有接口兼容性的前提下,将所有告警属性完整保留,放入一个名为"AlertProperties"的字段中。这种设计既不会破坏现有代码,又提供了访问完整告警数据的途径。
技术实现细节
改进后的告警数据处理逻辑如下:
{
"ID": alert["properties"]["systemAlertId"],
"Name": alert["properties"]["alertDisplayName"],
"AlertProperties": alert["properties"]
}
这种结构化的处理方式使得:
- 原有依赖ID和Name字段的代码不受影响
- 需要深入分析的安全团队可以通过AlertProperties访问所有原始属性
- 保持了数据的完整性和一致性
应用场景示例
获取完整告警属性后,安全团队可以实现更高级的分析功能,例如:
# 获取事件关联的所有告警
incident_alerts = sentinel.get_incident(incident_id, alerts=True)
for alert in incident_alerts:
# 访问基础属性
print(f"告警名称: {alert['Name']}")
# 访问完整属性
ext_props = json.loads(alert['AlertProperties']['ExtendedProperties'])
query = ext_props.get('Query')
start_time = ext_props.get('Query Start Time UTC')
end_time = ext_props.get('Query End Time UTC')
# 使用原始查询和时间范围进行深入分析
print(f"触发查询: {query}")
print(f"时间范围: {start_time} 至 {end_time}")
总结
MSTICPy对Sentinel告警属性获取能力的增强,显著提升了安全分析工作的效率和深度。这一改进使得安全团队能够:
- 直接获取告警的完整上下文信息
- 基于原始查询进行更精确的事件调查
- 减少额外API调用的需求,提高分析效率
- 保持与现有工作流程的兼容性
这一功能增强现已合并到主分支,将在下一版本中发布,为安全社区提供更强大的Sentinel集成能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19