MSTICPy扩展:增强Sentinel告警属性获取能力
2025-07-07 19:42:59作者:董灵辛Dennis
背景介绍
在安全运营中心(SOC)的日常工作中,Microsoft Sentinel作为云原生SIEM解决方案,其告警和事件管理功能至关重要。MSTICPy作为微软开源的威胁情报和安全分析工具包,提供了与Sentinel集成的能力,使安全分析师能够更高效地处理安全事件。
问题发现
在使用MSTICPy获取Sentinel事件关联告警时,发现当前实现存在一个功能限制:当通过get_incident方法设置alerts=True参数时,返回的告警信息仅包含ID和Name两个字段,而实际API响应中包含的丰富属性信息被丢弃了。
技术分析
深入分析MSTICPy源代码发现,在sentinel_incidents.py文件中,处理告警数据的逻辑确实只提取了系统告警ID和显示名称。然而,Sentinel API返回的告警对象包含更多有价值的属性,特别是ExtendedProperties字段,其中存储了查询语句、查询时间范围等关键信息。
这些扩展属性对于安全分析具有重要价值:
- 查询语句:可以直接获取触发告警的KQL查询
- 时间范围:包含查询的开始和结束时间UTC
- 其他上下文:可能包含实体映射、严重性评分等辅助分析的信息
解决方案实现
针对这一限制,社区贡献者提出了两种改进思路:
- 扩展现有参数功能:修改
alerts参数,使其不仅能接受布尔值,还可以接受字符串值如"full"来指定返回完整告警详情 - 新增专用参数:添加
all_alert_details=True参数来明确控制是否返回完整告警对象
实际实现采用了更直接的方案:在保持现有接口兼容性的前提下,将所有告警属性完整保留,放入一个名为"AlertProperties"的字段中。这种设计既不会破坏现有代码,又提供了访问完整告警数据的途径。
技术实现细节
改进后的告警数据处理逻辑如下:
{
"ID": alert["properties"]["systemAlertId"],
"Name": alert["properties"]["alertDisplayName"],
"AlertProperties": alert["properties"]
}
这种结构化的处理方式使得:
- 原有依赖ID和Name字段的代码不受影响
- 需要深入分析的安全团队可以通过AlertProperties访问所有原始属性
- 保持了数据的完整性和一致性
应用场景示例
获取完整告警属性后,安全团队可以实现更高级的分析功能,例如:
# 获取事件关联的所有告警
incident_alerts = sentinel.get_incident(incident_id, alerts=True)
for alert in incident_alerts:
# 访问基础属性
print(f"告警名称: {alert['Name']}")
# 访问完整属性
ext_props = json.loads(alert['AlertProperties']['ExtendedProperties'])
query = ext_props.get('Query')
start_time = ext_props.get('Query Start Time UTC')
end_time = ext_props.get('Query End Time UTC')
# 使用原始查询和时间范围进行深入分析
print(f"触发查询: {query}")
print(f"时间范围: {start_time} 至 {end_time}")
总结
MSTICPy对Sentinel告警属性获取能力的增强,显著提升了安全分析工作的效率和深度。这一改进使得安全团队能够:
- 直接获取告警的完整上下文信息
- 基于原始查询进行更精确的事件调查
- 减少额外API调用的需求,提高分析效率
- 保持与现有工作流程的兼容性
这一功能增强现已合并到主分支,将在下一版本中发布,为安全社区提供更强大的Sentinel集成能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896