PyTorch教程:强化学习实战指南(基于niconielsen32/pytorch-tutorials项目)
2025-06-19 10:11:53作者:姚月梅Lane
强化学习基础概念
强化学习(Reinforcement Learning)是机器学习的一个重要分支,它通过智能体(Agent)与环境(Environment)的交互来学习最优策略。与监督学习不同,强化学习不需要预先标记的数据,而是通过试错和奖励信号来指导学习过程。
强化学习的核心要素包括:
- 状态(State):描述环境的当前情况
- 动作(Action):智能体可以采取的行为
- 奖励(Reward):环境对智能体动作的反馈
- 策略(Policy):从状态到动作的映射规则
- 价值函数(Value Function):评估状态或状态-动作对的长期价值
环境构建:网格世界
在本教程中,我们首先构建了一个简单的网格世界环境(GridWorld),这是理解强化学习基础概念的理想起点。
class GridWorld:
"""5x5网格世界环境"""
def __init__(self, size=5):
self.size = size
self.reset()
def reset(self):
"""重置环境到初始状态"""
self.agent_pos = [0, 0] # 智能体起始位置
self.goal_pos = [self.size-1, self.size-1] # 目标位置
self.done = False
return self._get_state()
def _get_state(self):
"""获取当前状态表示"""
state = np.zeros((self.size, self.size))
state[self.agent_pos[0], self.agent_pos[1]] = 1 # 标记智能体位置
state[self.goal_pos[0], self.goal_pos[1]] = 2 # 标记目标位置
return state.flatten()
这个环境具有以下特点:
- 5x5的网格空间
- 智能体从左上角(0,0)出发
- 目标是到达右下角(4,4)
- 每步动作会获得-0.1的惩罚(鼓励尽快到达目标)
- 到达目标获得+10的奖励
深度Q网络(DQN)实现
DQN是深度强化学习的里程碑算法,它结合了Q学习和深度神经网络,能够处理高维状态空间。
网络结构设计
class DQN(nn.Module):
"""DQN网络结构"""
def __init__(self, state_size, action_size, hidden_size=128):
super().__init__()
self.fc1 = nn.Linear(state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, action_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
这个网络包含三个全连接层,使用ReLU激活函数,输出层直接输出每个动作的Q值估计。
经验回放机制
经验回放(Experience Replay)是DQN的关键技术,它通过存储和随机采样过去的经验来打破数据间的相关性。
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward', 'done'))
class ReplayBuffer:
"""经验回放缓冲区"""
def __init__(self, capacity=10000):
self.buffer = deque(maxlen=capacity)
def push(self, *args):
"""保存一个转移"""
self.buffer.append(Transition(*args))
DQN智能体实现
class DQNAgent:
"""DQN智能体实现"""
def __init__(self, state_size, action_size, lr=1e-3, gamma=0.99,
epsilon=1.0, epsilon_decay=0.995, epsilon_min=0.01):
# 初始化参数
self.q_network = DQN(state_size, action_size).to(device)
self.target_network = DQN(state_size, action_size).to(device)
self.optimizer = optim.Adam(self.q_network.parameters(), lr=lr)
self.memory = ReplayBuffer()
def act(self, state, training=True):
"""ε-贪婪策略选择动作"""
if training and random.random() < self.epsilon:
return random.randint(0, self.action_size - 1)
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
with torch.no_grad():
q_values = self.q_network(state_tensor)
return q_values.argmax().item()
训练过程分析
DQN的训练过程包含几个关键步骤:
- 初始化环境和智能体
- 智能体与环境交互,收集经验
- 从经验回放中采样小批量数据
- 计算当前Q值和目标Q值
- 通过最小化均方误差更新网络参数
- 定期更新目标网络
策略梯度方法:REINFORCE
REINFORCE是一种基于蒙特卡洛的策略梯度方法,它直接优化策略参数以最大化期望回报。
策略网络设计
class PolicyNetwork(nn.Module):
"""策略网络"""
def __init__(self, state_size, action_size, hidden_size=128):
super().__init__()
self.fc1 = nn.Linear(state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, action_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return F.softmax(x, dim=-1) # 输出动作概率分布
REINFORCE算法实现
class REINFORCEAgent:
"""REINFORCE智能体"""
def train(self):
"""使用收集的奖励更新策略"""
R = 0
policy_loss = []
returns = []
# 计算折扣回报
for r in self.rewards[::-1]:
R = r + self.gamma * R
returns.insert(0, R)
# 标准化回报
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + 1e-9)
# 计算策略梯度损失
for log_prob, R in zip(self.saved_log_probs, returns):
policy_loss.append(-log_prob * R)
# 参数更新
self.optimizer.zero_grad()
policy_loss = torch.cat(policy_loss).sum()
policy_loss.backward()
self.optimizer.step()
实验结果与可视化
通过训练过程的可视化,我们可以直观地理解算法的学习过程:
- 训练得分曲线:展示智能体在训练过程中获得的累计奖励变化
- 损失函数曲线:反映Q网络或策略网络的优化过程
- ε衰减曲线:显示探索率随训练的变化
- 学习路径可视化:展示训练后智能体在环境中的移动路径
强化学习实践建议
- 超参数调优:学习率、折扣因子γ、探索率ε等参数对性能影响很大
- 奖励设计:合理的奖励函数对算法收敛至关重要
- 网络结构:根据任务复杂度调整网络深度和宽度
- 训练技巧:适当使用目标网络、双网络等技术提高稳定性
- 评估方法:定期测试智能体性能,避免过拟合训练环境
通过本教程,读者可以掌握使用PyTorch实现强化学习算法的核心方法,为进一步研究更复杂的强化学习问题打下坚实基础。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193