Kubeflow Pipelines 测试框架迁移:从 Prow 到 GitHub Actions
2025-06-18 22:16:48作者:宣聪麟
背景介绍
Kubeflow Pipelines 作为 Kubeflow 生态系统中的核心组件,提供了一个强大的平台用于构建和部署机器学习工作流。在持续集成(CI)流程中,项目维护团队决定将测试框架从 Google 的 Prow 系统迁移到 GitHub Actions,这一变更旨在简化维护流程并提高开发效率。
迁移的技术考量
测试框架迁移涉及多个技术层面的决策:
- 环境一致性:确保在 GitHub Actions 中复现原有 Prow 测试环境的所有依赖和配置
- 执行效率:优化测试执行时间,合理利用 GitHub Actions 的并行执行能力
- 结果可视化:保持测试结果报告的清晰可读性,便于开发者快速定位问题
具体实施步骤
迁移工作主要分为以下几个关键阶段:
1. 分析现有 Prow 配置
首先需要深入理解现有的 Prow 配置文件,包括:
- 测试容器的基础镜像
- 执行命令和参数
- 环境变量设置
- 资源需求(CPU/内存)
- 依赖项安装流程
2. 设计 GitHub Actions 工作流
基于分析结果,设计对应的 GitHub Actions 工作流文件,考虑:
- 使用适当的工作流触发器(如 pull_request)
- 定义合理的作业矩阵(如果需要多环境测试)
- 设置缓存策略以加速依赖安装
- 配置适当的超时时间
3. 实现测试执行逻辑
将原有的测试执行逻辑转换为 GitHub Actions 步骤:
- 设置构建环境
- 安装必要的工具和依赖
- 执行测试命令
- 处理测试结果输出
4. 验证与优化
通过实际 PR 测试验证新工作流:
- 确保测试覆盖率与原有系统一致
- 比较执行时间差异
- 优化步骤顺序以提高效率
- 处理可能的环境差异问题
技术挑战与解决方案
在迁移过程中可能遇到以下挑战:
-
环境差异:Prow 和 GitHub Actions 运行环境存在差异,可能导致测试行为不一致。解决方案是通过详细的日志记录和环境检查来识别并解决差异点。
-
权限管理:某些测试可能需要特殊权限。在 GitHub Actions 中需要合理配置 secrets 和工作流权限。
-
资源限制:GitHub Actions 对资源有一定限制,需要优化测试用例的资源使用或考虑分批执行。
最佳实践建议
基于此次迁移经验,总结出以下最佳实践:
-
渐进式迁移:先并行运行新旧系统,确保稳定性后再完全切换
-
详细日志:在关键步骤添加详细的日志输出,便于问题排查
-
监控指标:建立执行时间和成功率等关键指标的监控
-
文档更新:同步更新贡献指南中的测试相关说明
总结
Kubeflow Pipelines 测试框架从 Prow 迁移到 GitHub Actions 是一项重要的基础设施改进,它不仅简化了维护流程,还使开源贡献者能够更直观地理解和使用项目的 CI 系统。这种迁移模式也为其他考虑类似转型的开源项目提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882