Apache Fineract CN Docker Compose项目安装指南
2024-11-29 18:33:13作者:宗隆裙
1. 项目介绍
Apache Fineract CN 是一个开源的、用于构建金融服务的平台,它提供了一个完整的、模块化的银行系统,支持各种金融服务。Docker Compose版本则使得部署Apache Fineract CN更加便捷,它通过Docker容器和Kubernetes脚本来部署服务。
2. 项目下载位置
项目托管在GitHub上,您可以访问以下位置下载Apache Fineract CN Docker Compose项目:
https://github.com/apache/fineract-cn-docker-compose.git
3. 项目安装环境配置
在开始安装之前,确保您的系统中已经安装了以下环境:
- Kubernetes
- Docker
- Docker Compose
- Java
以下是一个示例图片,展示了在终端中检查Docker Compose版本的情况:
$ docker-compose --version
docker-compose version 1.29.2, build 0746c7a
请确保您的环境与上述要求一致。
4. 项目安装方式
克隆项目
首先,从GitHub上克隆项目到本地:
git clone https://github.com/apache/fineract-cn-docker-compose.git
cd fineract-cn-docker-compose
部署到Kubernetes
在项目目录中,使用以下命令部署Apache Fineract CN服务到您的Kubernetes集群:
cd kubernetes_scripts
bash kubectl-start-up.sh
部署完成后,通过以下命令检查所有服务的状态:
kubectl get services
最后,通过以下命令来配置微服务:
cd bash_scripts
bash provision.sh --deploy-on-kubernetes playground # 将playground替换为您的租户名称
使用Docker和Docker Compose部署
您也可以选择使用Docker和Docker Compose来自动或手动部署服务。
自动部署
启动所有Apache Fineract CN服务,运行以下命令:
bash start-up.sh
接着,登录到最后一个部署的微服务(fineract-cn-notification)来确认所有服务都已启动:
docker logs -f fineract-cn-docker-compose_notifications-ms_1
之后,配置微服务:
cd bash_scripts
bash provision.sh playground # 将playground替换为您的租户名称
手动部署
首先,生成环境变量文件:
java -cp external_tools/lang-0.1.0-BUILD-SNAPSHOT.jar org.apache.fineract.cn.lang.security.RsaKeyPairFactory UNIX > env
然后,启动外部工具(如数据库、Cassandra等):
cd external_tools
docker-compose up
接下来,启动微服务:
docker-compose up provisioner-ms
等待provisioner-ms启动并创建所需的数据库表后,再启动其他服务。
5. 项目处理脚本
项目中的脚本主要用于部署和配置Apache Fineract CN。以下是一些关键脚本的简要说明:
kubectl-start-up.sh:用于在Kubernetes集群上启动所有Apache Fineract CN服务。provision.sh:用于配置微服务,需要指定部署的环境(如Kubernetes)和租户名称。start-up.sh:用于使用Docker Compose启动所有Apache Fineract CN服务。
通过遵循上述步骤,您应该能够成功下载并安装Apache Fineract CN Docker Compose项目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868