VimGolf.com 技术文档
以下是对 VimGolf.com 项目的详细技术文档,包括安装指南、使用说明以及项目API使用文档。
1. 安装指南
安装 CLI 工具
首先,确保您已经安装了 Ruby。然后使用以下命令安装 vimgolf gem:
gem install vimgolf
设置 API 密钥
在安装 CLI 工具后,您需要设置 API 密钥。前往 vimgolf.com 登录并获取您的 API 密钥。然后运行以下命令:
vimgolf setup
按照提示输入您的 API 密钥。
使用 Docker
如果您不想安装 Ruby,可以使用 Docker 运行 VimGolf。运行以下命令:
docker run --rm -it -e "key=YOUR_VIMGOLF_KEY" ghcr.io/filbranden/vimgolf challenge_ID
将 YOUR_VIMGOLF_KEY 替换为您的 API 密钥,challenge_ID 替换为您想要挑战的挑战 ID。
2. 项目的使用说明
启动挑战
选择一个挑战后,使用以下命令启动挑战:
vimgolf put [challenge ID]
将 [challenge ID] 替换为您选择的挑战 ID。
挑战文件将从网站下载,并在本地启动 Vim 会话。Vim 会话将记录您所做的每一个按键操作。完成挑战后,简单地输入 :wq(写入并退出)结束会话,我们将评分您的输入并上传回网站。
3. 项目API使用文档
目前,VimGolf.com 没有公开的 API 文档。如果您需要使用 API,建议直接查看项目的代码仓库或联系项目维护者以获取更多信息。
4. 项目安装方式
环境要求
- Ruby
- Gem Bundler
- SQLite3 (版本 3.25 或更新版本)
- PostgreSQL(可选)
使用 SQLite3
在本地开发环境中,您可以使用 SQLite3。确保您的系统上安装了 SQLite3 版本 3.25 或更新版本。然后运行以下命令:
bundle exec rails db:drop db:setup
或者,如果您想创建更多挑战、用户和条目:
bundle exec rails db:drop db:setup challenges=40 users=30 entries=20
使用 PostgreSQL
如果您想使用 PostgreSQL,首先在本地安装并启动 PostgreSQL 实例。然后,运行以下命令创建数据库:
sudo -u postgres createuser -d $(whoami)
在运行 Ruby 和 Rails 代码时,为了在开发和测试环境中使用 PostgreSQL 适配器,请导出环境变量 DATABASE_ADAPTER=pg。
使用以下命令创建数据库:
DATABASE_ADAPTER=pg bundle exec rails db:migrate:reset
DATABASE_ADAPTER=pg bundle exec rails db:seed challenges=40 users=30 entries=20
启动应用
启动服务器:
bundle exec unicorn -c config/unicorn.rb -E development
确保在 PostgreSQL 环境中,您已经通过环境变量传递了 DATABASE_ADAPTER=pg。
在浏览器中打开 localhost:8080。
您可以通过以下命令查看 Rails 日志:
tail -f log/development.log
开发环境下的登录用户
在开发环境下,点击“Sign In with Twitter”几乎肯定会遇到以下错误:
OAuth::Unauthorized
401 Authorization Required
作为解决方案,您可以编辑 app/controllers/application_controller.rb 文件,将以下代码:
@current_user ||= User.where(uid: session[:user]).first if session[:user]
替换为:
@current_user ||= User.first
或者,如果您有特定的用户:
@current_user ||= User.find_by_nickname('myuser')
以上就是关于 VimGolf.com 项目的技术文档,希望对您有所帮助。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00