优化 Meshery 项目中 Playwright 测试性能的实践指南
2025-05-31 22:44:04作者:管翌锬
在 Meshery 项目的持续集成/持续交付(CI/CD)流程中,我们发现 Playwright 端到端测试的执行时间过长,约60个测试用例需要超过30分钟才能完成。本文将详细介绍我们如何通过多种技术手段显著提升测试执行效率。
性能瓶颈分析
通过深入分析测试执行过程,我们发现主要存在以下几个性能瓶颈:
- 串行执行:测试用例默认采用串行方式运行,无法充分利用现代CI/CD环境的并行处理能力
- 重复初始化:每个测试用例都重新启动应用服务器和浏览器上下文,造成大量重复开销
- 浏览器选择:在CI环境中使用功能齐全但较重的浏览器引擎
优化方案实施
并行测试执行
Playwright 天然支持并行测试执行。我们通过调整配置文件中的 workers 参数来充分利用CI环境的计算资源:
// playwright.config.ts
export default defineConfig({
workers: process.env.CI ? 4 : 2, // 在CI环境中使用4个工作线程
});
测试分片技术
对于大型测试套件,我们实现了测试分片(Sharding)技术,将测试用例分配到多个CI实例上并行执行:
npx playwright test --shard=1/3
npx playwright test --shard=2/3
npx playwright test --shard=3/3
应用服务器复用
通过配置 webServer 选项,我们实现了应用服务器的复用,避免了为每个测试用例重新启动服务器:
// playwright.config.ts
webServer: {
command: 'npm run start',
url: 'http://localhost:3000',
reuseExistingServer: !process.env.CI,
timeout: 120 * 1000,
},
浏览器上下文优化
我们改进了测试代码,通过重用浏览器上下文来避免不必要的页面重载:
test.describe('功能测试套件', () => {
let page: Page;
test.beforeAll(async ({ browser }) => {
page = await browser.newPage();
});
test.afterAll(async () => {
await page.close();
});
// 测试用例使用共享的page实例
});
CI环境浏览器选择
在CI环境中,我们改用轻量级的Chromium浏览器,相比功能完整的Chrome能提供更好的性能:
// playwright.config.ts
projects: [
{
name: 'chromium',
use: { ...devices['Desktop Chrome'] },
},
],
优化效果评估
实施上述优化措施后,我们观察到以下改进:
- 执行时间缩短:测试套件总执行时间从30+分钟减少到约15分钟,提升约50%
- 资源利用率提高:CI环境的CPU和内存使用更加均衡,避免了资源闲置
- 反馈周期缩短:开发人员能够更快获得测试结果,加速了开发迭代速度
最佳实践总结
基于我们的优化经验,总结出以下Playwright测试性能优化的最佳实践:
- 合理设置workers数量:根据CI环境的CPU核心数配置适当的workers数量
- 优先使用Chromium:在CI环境中,Chromium通常能提供最佳的性能平衡
- 重用测试资源:尽可能复用服务器、浏览器上下文等重型资源
- 监控测试性能:定期分析测试执行时间,识别新的性能瓶颈
- 渐进式优化:从影响最大的优化点入手,逐步实施其他优化措施
通过系统性地应用这些优化技术,Meshery项目显著提升了端到端测试的效率,为持续交付流程提供了更快速的反馈环。这些经验同样适用于其他基于Playwright的测试套件优化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217