PaddleSlim项目中RT-DETR模型量化配置问题解析
问题背景
在使用PaddleSlim进行RT-DETR模型量化时,当配置文件中将NMS(非极大值抑制)设置为False时,会出现KeyError错误,提示缺少'arch'键。这一问题源于PaddleSlim示例代码默认仅支持PPYOLOE模型的后处理逻辑。
技术分析
RT-DETR是PaddleDetection中基于Transformer架构的目标检测模型,与传统的基于CNN的检测模型(如PPYOLOE)在后处理流程上存在差异。在量化过程中,模型的后处理部分需要特殊处理:
-
NMS配置影响:当include_nms设置为False时,量化过程需要明确知道如何处理模型的输出。对于RT-DETR这类端到端检测器,其输出格式与需要NMS的传统检测器不同。
-
架构识别问题:错误信息显示程序试图访问global_config['arch'],但该键不存在。这表明量化脚本需要明确知道当前处理的模型架构类型,以便应用正确的后处理方法。
解决方案
要解决这一问题,需要对PaddleSlim的量化脚本进行以下修改:
-
添加RT-DETR支持:在量化脚本中明确添加对RT-DETR模型架构的识别和处理分支。
-
后处理逻辑适配:针对RT-DETR的输出特点,实现专门的评估函数。RT-DETR作为端到端检测器,其输出已经是最终的检测结果,不需要传统的NMS处理。
-
配置文件完善:在配置文件中明确指定模型架构类型,确保量化过程能够正确识别并处理RT-DETR模型。
实施建议
对于需要在PaddleSlim中量化RT-DETR模型的开发者,建议:
- 检查量化脚本中是否包含对RT-DETR架构的专门处理
- 确保配置文件中包含模型架构信息
- 根据RT-DETR的输出特点,调整评估指标计算方式
- 如果使用自定义后处理,确保与量化过程兼容
总结
PaddleSlim作为模型压缩工具,需要针对不同模型架构进行适配。RT-DETR作为Transformer-based检测器,其后处理流程与传统CNN-based检测器不同,在量化时需要特别注意这一点。通过正确配置和必要的代码修改,可以实现RT-DETR模型的高效量化。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01