首页
/ PaddleSlim项目中RT-DETR模型量化配置问题解析

PaddleSlim项目中RT-DETR模型量化配置问题解析

2025-07-10 13:32:23作者:虞亚竹Luna

问题背景

在使用PaddleSlim进行RT-DETR模型量化时,当配置文件中将NMS(非极大值抑制)设置为False时,会出现KeyError错误,提示缺少'arch'键。这一问题源于PaddleSlim示例代码默认仅支持PPYOLOE模型的后处理逻辑。

技术分析

RT-DETR是PaddleDetection中基于Transformer架构的目标检测模型,与传统的基于CNN的检测模型(如PPYOLOE)在后处理流程上存在差异。在量化过程中,模型的后处理部分需要特殊处理:

  1. NMS配置影响:当include_nms设置为False时,量化过程需要明确知道如何处理模型的输出。对于RT-DETR这类端到端检测器,其输出格式与需要NMS的传统检测器不同。

  2. 架构识别问题:错误信息显示程序试图访问global_config['arch'],但该键不存在。这表明量化脚本需要明确知道当前处理的模型架构类型,以便应用正确的后处理方法。

解决方案

要解决这一问题,需要对PaddleSlim的量化脚本进行以下修改:

  1. 添加RT-DETR支持:在量化脚本中明确添加对RT-DETR模型架构的识别和处理分支。

  2. 后处理逻辑适配:针对RT-DETR的输出特点,实现专门的评估函数。RT-DETR作为端到端检测器,其输出已经是最终的检测结果,不需要传统的NMS处理。

  3. 配置文件完善:在配置文件中明确指定模型架构类型,确保量化过程能够正确识别并处理RT-DETR模型。

实施建议

对于需要在PaddleSlim中量化RT-DETR模型的开发者,建议:

  1. 检查量化脚本中是否包含对RT-DETR架构的专门处理
  2. 确保配置文件中包含模型架构信息
  3. 根据RT-DETR的输出特点,调整评估指标计算方式
  4. 如果使用自定义后处理,确保与量化过程兼容

总结

PaddleSlim作为模型压缩工具,需要针对不同模型架构进行适配。RT-DETR作为Transformer-based检测器,其后处理流程与传统CNN-based检测器不同,在量化时需要特别注意这一点。通过正确配置和必要的代码修改,可以实现RT-DETR模型的高效量化。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8