Hackbat 开源项目教程
1. 项目介绍
Hackbat 是一个开源的硬件平台,专为黑客和创客设计,用于实验不同的渗透测试技术。该项目基于 Raspberry Pi RP2040 微控制器,并集成了 RF 收发器、NFC、Wi-Fi、OLED 显示器等功能。Hackbat 的设计目标是提供一个低成本、高灵活性的平台,用于网络安全研究和渗透测试。
2. 项目快速启动
2.1 硬件准备
- Raspberry Pi RP2040 微控制器
- RF 收发器 (CC1101)
- NFC 模块 (PN532)
- Wi-Fi 模块 (ESP-12F)
- OLED 显示器 (128x64 像素)
- SD 卡槽
- USB 接口
2.2 软件准备
- Arduino IDE
- Python 或 C++ 开发环境
2.3 快速启动步骤
-
克隆项目仓库
git clone https://github.com/controlpaths/hackbat.git cd hackbat -
安装依赖
根据项目文档安装所需的库和依赖项。
-
编译和上传代码
使用 Arduino IDE 或其他支持的开发环境编译代码,并上传到 RP2040 微控制器。
// 示例代码片段 #include <Arduino.h> #include <Wire.h> #include <Adafruit_GFX.h> #include <Adafruit_SH110X.h> Adafruit_SH1106G display = Adafruit_SH1106G(128, 64, &Wire, -1); void setup() { Serial.begin(115200); display.begin(0, true); // 初始化 OLED 显示器 display.display(); delay(2000); display.clearDisplay(); display.setTextSize(1); display.setTextColor(SH110X_WHITE); display.setCursor(0, 0); display.println("Hackbat 启动中..."); display.display(); } void loop() { // 主循环代码 } -
配置和测试
根据项目文档配置各个模块,并进行功能测试。
3. 应用案例和最佳实践
3.1 渗透测试
Hackbat 可以用于各种渗透测试场景,包括无线网络扫描、NFC 卡模拟、键盘注入攻击等。通过集成多种通信模块,Hackbat 能够模拟和攻击多种设备和网络。
3.2 网络安全研究
研究人员可以使用 Hackbat 进行网络安全研究,探索不同通信协议的漏洞和安全机制。Hackbat 的开源设计和丰富的功能使其成为网络安全研究的理想工具。
3.3 创客项目
创客可以使用 Hackbat 进行各种创意项目,如智能家居控制、无线传感器网络等。Hackbat 的灵活性和可扩展性使其适用于各种创客项目。
4. 典型生态项目
4.1 Raspberry Pi 生态
Hackbat 基于 Raspberry Pi RP2040 微控制器,可以与 Raspberry Pi 生态系统中的其他项目和工具无缝集成。例如,可以使用 Raspberry Pi 作为主机,通过 USB 接口与 Hackbat 进行通信。
4.2 Arduino 生态
Hackbat 支持 Arduino IDE,可以与 Arduino 生态系统中的各种库和工具集成。例如,可以使用 Arduino 库进行 OLED 显示器的控制和数据可视化。
4.3 开源硬件社区
Hackbat 是一个开源项目,可以与开源硬件社区中的其他项目和工具进行集成。例如,可以与其他开源硬件平台(如 ESP32、STM32 等)进行通信和协作。
通过本教程,您应该能够快速启动并使用 Hackbat 进行各种渗透测试和网络安全研究。希望您能够充分利用 Hackbat 的强大功能,探索更多有趣的应用场景。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00