Blazorise DataGrid 自定义排序功能解析
背景介绍
Blazorise 是一个基于 Blazor 的 UI 组件库,其中的 DataGrid 组件提供了强大的数据展示和排序功能。在实际开发中,我们经常会遇到需要对混合类型数据(如包含字母和数字的字符串)进行特殊排序的需求。
问题场景
在常规的数据网格排序中,字符串类型的列会按照字典序进行排序,这会导致类似 "A-1, A-2, A-10" 这样的数据被排序为 "A-1, A-10, A-2",而这通常不是用户期望的结果。用户期望的是能够识别字符串中的数字部分,并按数值大小进行排序,即 "A-1, A-2, A-10"。
解决方案演进
Blazorise 团队针对这一需求提出了几种解决方案:
-
简单字段映射方案:通过添加一个专门用于排序的计算属性,对原始数据进行预处理,使其能够正确排序。例如将 "A-10" 转换为 "A-00010" 这样的固定长度格式。
-
自定义排序字段函数:在 DataGridColumn 上提供 SortFieldFunc 属性,允许开发者传入一个 lambda 表达式,动态计算排序键值。
-
自定义比较器方案:实现完整的 IComparer 接口,提供更灵活的比较逻辑,可以处理各种复杂的混合字符串排序场景。
技术实现细节
对于最复杂的第三种方案,开发者可以实现如下比较逻辑:
public class AlphanumericComparer : IComparer<string>
{
public int Compare(string x, string y)
{
// 分割字符串为字母和数字部分
var xParts = Regex.Split(x, "([0-9]+)");
var yParts = Regex.Split(y, "([0-9]+)");
// 逐部分比较
for (int i = 0; i < Math.Min(xParts.Length, yParts.Length); i++)
{
// 如果都是数字,按数值比较
if (int.TryParse(xParts[i], out int xNum) &&
int.TryParse(yParts[i], out int yNum))
{
if (xNum != yNum)
return xNum.CompareTo(yNum);
}
// 否则按字符串比较
else
{
int strCompare = string.Compare(xParts[i], yParts[i], StringComparison.OrdinalIgnoreCase);
if (strCompare != 0)
return strCompare;
}
}
// 如果共同部分都相同,长度短的排在前面
return xParts.Length.CompareTo(yParts.Length);
}
}
最佳实践建议
-
简单场景:如果数据格式相对固定,优先使用计算属性方案,性能最佳。
-
中等复杂度:当需要处理多种格式但规则明确时,使用 SortFieldFunc 方案。
-
高度复杂:只有在前两种方案无法满足时,才考虑实现完整比较器,因为这会带来额外的性能开销。
性能考量
对于大数据量的排序,需要注意:
-
正则表达式分割虽然方便,但性能较差,可以考虑优化为手动解析。
-
计算属性方案在数据不变的情况下可以缓存结果,避免重复计算。
-
在 Blazor 的虚拟滚动场景中,排序性能尤为关键,应尽量减少不必要的计算。
总结
Blazorise DataGrid 通过灵活的排序方案设计,满足了从简单到复杂的各种排序需求。开发者可以根据实际场景选择最适合的方案,在功能实现和性能之间取得平衡。对于常见的混合字符串排序问题,合理使用这些特性可以显著提升用户体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00