MedicalGPT项目中ChatGLM2模型梯度检查点问题解析
2025-06-18 04:08:53作者:侯霆垣
在使用MedicalGPT项目进行监督式微调时,部分用户遇到了一个关于ChatGLM2模型的技术问题。当从Bloom模型切换到ChatGLM2模型后,程序在执行model.gradient_checkpointing_enable()方法时抛出了异常。
问题现象
异常信息显示:ChatGLMPreTrainedModel._set_gradient_checkpointing()方法接收到了一个意外的关键字参数'enable'。这表明ChatGLM2模型的实现与Bloom模型在梯度检查点功能的实现上存在差异。
技术背景
梯度检查点(Gradient Checkpointing)是一种内存优化技术,它通过在前向传播过程中只保存部分中间结果,在反向传播时重新计算其余部分,从而显著减少内存使用量。这对于大型语言模型的训练尤为重要,因为可以允许更大的批次尺寸或更深的模型结构。
问题原因
ChatGLM2模型的实现中,_set_gradient_checkpointing()方法的接口设计与其他模型(如Bloom)不同。具体来说:
- ChatGLM2的该方法不接受'enable'参数
- 可能是通过其他方式启用梯度检查点功能
- 或者该模型本身不支持标准的梯度检查点实现
解决方案
针对这个问题,开发者可以采取以下两种解决方案:
-
注释掉相关代码:直接移除或注释掉model.gradient_checkpointing_enable()这行代码。这种方法简单直接,但会完全禁用梯度检查点功能。
-
更新代码适配ChatGLM2:根据ChatGLM2的API文档,使用模型特定的方式启用梯度检查点。可能需要查阅ChatGLM2的官方文档或源代码,了解其特定的实现方式。
最佳实践建议
对于使用MedicalGPT项目的开发者,在处理不同模型时应注意:
- 不同模型架构可能有不同的API实现细节
- 在切换模型时,需要检查所有模型特定的配置项
- 梯度检查点虽然是优化技术,但不是所有模型都支持标准实现
- 对于不支持梯度检查点的模型,可以考虑减小批次尺寸或使用其他内存优化技术
这个问题提醒我们,在使用开源项目整合多种模型时,需要特别注意各模型实现细节的差异性,特别是在内存优化等高级功能上的不同实现方式。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.03 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
45
78

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
533
60

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
947
556

React Native鸿蒙化仓库
C++
198
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
381
17

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71