Kubernetes Descheduler内存利用率计算机制解析
2025-06-11 13:27:36作者:俞予舒Fleming
背景介绍
在Kubernetes集群资源管理中,Descheduler作为关键的负载均衡组件,其资源利用率计算准确性直接影响着Pod驱逐决策的有效性。近期社区用户反馈的Descheduler v0.24版本中,出现了内存利用率计算值与实际监控数据存在显著差异的情况,这引发了我们对核心计算机制的深入探讨。
核心问题现象
用户配置了LowNodeUtilization策略,设定内存使用率阈值(thresholds为75%,targetThresholds为90%)。但实际运行中发现:
- Descheduler日志显示节点内存利用率为46.36%
- kubectl top nodes显示实际利用率为83% 这种差异导致Descheduler误判节点状态,未能及时触发Pod驱逐操作。
技术原理分析
经深入排查发现,v0.24版本的Descheduler在计算资源利用率时存在以下特性:
-
计算基准差异
- kubectl top nodes基于节点实际内存消耗量
- Descheduler默认采用Pod的request值作为计算基准 这种设计差异会导致在以下场景出现偏差:
- Pod实际内存使用量超过request配置
- 节点存在系统进程或其他非Pod内存消耗
-
历史版本行为 早期版本(v0.24及之前)主要面向稳态调度场景,优先考虑资源预留的可靠性。这种设计虽然能防止过度驱逐,但在突发负载场景下可能反应滞后。
解决方案建议
对于遇到类似问题的用户,建议采取以下措施:
-
版本升级策略 推荐升级到新版本(v1.x+),新版已支持多种计算模式:
- 实际使用量(usage)模式
- 请求量(request)模式
- 混合计算模式
-
临时调整方案 若暂时无法升级,可通过调整阈值缓解:
thresholds: memory: 25 # 降低触发阈值 targetThresholds: memory: 50 # 缩小缓冲区间但需注意可能引发频繁驱逐,建议配合PodDisruptionBudget使用。
-
监控体系完善 建议建立多维监控:
- 节点实际资源使用率
- Pod资源request/limit配置
- Descheduler决策日志分析
最佳实践
-
版本选择 生产环境建议使用v1.0+版本,其资源计算策略更贴近实际运维需求。
-
配置原则
- 测试环境:建议采用实际使用量模式,快速响应负载变化
- 生产环境:推荐混合模式,平衡稳定性和响应速度
-
容量规划 应定期审查:
- Pod资源request配置合理性
- 节点系统预留资源设置
- 监控数据与调度策略的匹配度
总结
本次案例揭示了Kubernetes资源管理体系中计量基准选择的重要性。随着版本迭代,Descheduler已发展出更精细化的资源评估机制。运维团队在实施集群优化时,需要充分理解各组件的数据采集逻辑,才能构建精准高效的调度体系。建议用户定期评估组件版本,及时获取最新的调度优化能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1