Kubernetes Descheduler内存利用率计算机制解析
2025-06-11 23:58:25作者:俞予舒Fleming
背景介绍
在Kubernetes集群资源管理中,Descheduler作为关键的负载均衡组件,其资源利用率计算准确性直接影响着Pod驱逐决策的有效性。近期社区用户反馈的Descheduler v0.24版本中,出现了内存利用率计算值与实际监控数据存在显著差异的情况,这引发了我们对核心计算机制的深入探讨。
核心问题现象
用户配置了LowNodeUtilization策略,设定内存使用率阈值(thresholds为75%,targetThresholds为90%)。但实际运行中发现:
- Descheduler日志显示节点内存利用率为46.36%
- kubectl top nodes显示实际利用率为83% 这种差异导致Descheduler误判节点状态,未能及时触发Pod驱逐操作。
技术原理分析
经深入排查发现,v0.24版本的Descheduler在计算资源利用率时存在以下特性:
-
计算基准差异
- kubectl top nodes基于节点实际内存消耗量
- Descheduler默认采用Pod的request值作为计算基准 这种设计差异会导致在以下场景出现偏差:
- Pod实际内存使用量超过request配置
- 节点存在系统进程或其他非Pod内存消耗
-
历史版本行为 早期版本(v0.24及之前)主要面向稳态调度场景,优先考虑资源预留的可靠性。这种设计虽然能防止过度驱逐,但在突发负载场景下可能反应滞后。
解决方案建议
对于遇到类似问题的用户,建议采取以下措施:
-
版本升级策略 推荐升级到新版本(v1.x+),新版已支持多种计算模式:
- 实际使用量(usage)模式
- 请求量(request)模式
- 混合计算模式
-
临时调整方案 若暂时无法升级,可通过调整阈值缓解:
thresholds: memory: 25 # 降低触发阈值 targetThresholds: memory: 50 # 缩小缓冲区间但需注意可能引发频繁驱逐,建议配合PodDisruptionBudget使用。
-
监控体系完善 建议建立多维监控:
- 节点实际资源使用率
- Pod资源request/limit配置
- Descheduler决策日志分析
最佳实践
-
版本选择 生产环境建议使用v1.0+版本,其资源计算策略更贴近实际运维需求。
-
配置原则
- 测试环境:建议采用实际使用量模式,快速响应负载变化
- 生产环境:推荐混合模式,平衡稳定性和响应速度
-
容量规划 应定期审查:
- Pod资源request配置合理性
- 节点系统预留资源设置
- 监控数据与调度策略的匹配度
总结
本次案例揭示了Kubernetes资源管理体系中计量基准选择的重要性。随着版本迭代,Descheduler已发展出更精细化的资源评估机制。运维团队在实施集群优化时,需要充分理解各组件的数据采集逻辑,才能构建精准高效的调度体系。建议用户定期评估组件版本,及时获取最新的调度优化能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
410
3.16 K
Ascend Extension for PyTorch
Python
227
254
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
264
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868