TDengine 3.3.5.2版本发布:时序数据库的重大优化与功能增强
TDengine作为一款高性能的时序数据库,在3.3.5.2版本中带来了多项重要改进和优化。这个版本不仅增强了核心功能,还修复了多个关键问题,进一步提升了系统的稳定性和可靠性。
核心功能增强
在3.3.5.2版本中,TDengine对taosX工具进行了重要升级,现在支持通过模板为MQTT创建多个超级表。这一改进极大地简化了物联网场景下多设备数据采集和存储的配置工作,用户可以通过定义模板快速创建和管理大量设备的数据表结构。
备份恢复功能也得到了显著优化。新版本改进了taosX工具的备份恢复流程,使得大规模数据迁移更加可靠和高效。特别是在多级存储数据迁移场景下,系统现在能够更好地处理长时间迁移过程中可能发生的Vnode leader切换问题,确保数据一致性。
系统稳定性提升
3.3.5.2版本对系统稳定性进行了多方面优化。首先,调整了taosd进程的systemctl管理策略,如果在60秒内连续三次重启失败,系统将延迟900秒后再尝试重启,避免了频繁重启可能导致的系统资源耗尽问题。
日志系统也得到了改进,消除了日志文件切换过程中可能出现的同步问题。同时,修复了多个可能导致系统异常的场景,包括创建超过100个视图后执行show views命令、频繁执行"drop table with tb_uid"语句等情况下的稳定性问题。
查询与数据处理优化
在查询功能方面,新版本修复了多个关键问题。当子查询来自超级表时,排序信息现在能够正确推送;使用percentile函数和会话窗口查询时出现的异常问题得到解决;SELECT * FROM子查询现在能够正确复制列名;字符串类型数据的max/min函数计算结果更加准确。
对于流计算功能,系统现在会正确报告不支持HAVING子句的错误,而不是静默接受无效配置。视图功能也有所改进,当视图中包含带有别名的ORDER BY子句时,查询不再出错。
数据订阅与写入改进
数据订阅功能(TMQ)在多个方面得到增强。修改子表标签值后,订阅现在能够立即获取新标签值;tmq_consumer_poll函数在调用失败时会正确返回错误码;解决了消费者执行unsubscribe后立即订阅其他主题时的错误问题。
在数据写入方面,修复了stmt2接口的多个问题:当未绑定所有数据列时插入失败的问题、数据库名或表名使用反引号时插入失败的问题。同时,通过STMT接口写入不符合拓扑规范的Geometry数据类型时,系统会给出更准确的错误提示。
系统管理与安全
新版本加强了系统管理能力,修复了动态修改系统参数无效的问题,并禁止创建与系统数据库同名的数据库(如information_schema、performance_schema)。在安全方面,修复了Go连接器中存在的CVE-2022-28948问题。
版本信息显示也更加准确,taos shell现在能够正确区分社区版和企业版。对于复制场景中的随机事务冲突错误,系统进行了针对性修复,提高了数据同步的可靠性。
总结
TDengine 3.3.5.2版本通过一系列功能增强和问题修复,显著提升了系统的稳定性、可靠性和易用性。无论是核心的时序数据处理能力,还是周边的工具链支持,都得到了实质性改进。这些变化使得TDengine在各种时序数据场景下,特别是物联网和大规模监控系统中,能够提供更加稳定和高效的服务。
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0256Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选









