Apache Serf 技术文档
1. 安装指南
1.1 SCons 构建系统
Apache Serf 使用 SCons 2.3 作为其构建系统。如果您的系统上没有安装 SCons,您需要先安装它。如果没有权限,您可以将“本地”版本下载并安装到您的家目录中。安装后,只需创建一个指向 /path/to/scons/scons.py 的 scons 的符号链接。
下载 SCons 本地包:
http://prdownloads.sourceforge.net/scons/scons-local-2.3.0.tar.gz
1.2 构建 Apache Serf
构建 Serf 的命令如下:
$ scons APR=/path/to/apr APU=/path/to/apu OPENSSL=/openssl/base PREFIX=/path/to/prefix
这些开关将被记录到 .saved_config 文件中,因此下次运行 scons 时无需再次指定。
PREFIX 应指定 Serf 应安装的位置。默认值为 /usr/local。
其他三个开关(APR、APU、OPENSSL)的默认值也是 /usr。
构建系统会在 $APR/bin/apr-1-config 搜索 apr-1-config,或者路径应指向 apr-1-config 本身。apu-1-config 的路径同理。
OPENSSL 应指定安装的根目录(例如 /opt/local)。头文件将在 OPENSSL/include 目录中找到,库文件在 OPENSSL/lib 目录中。
如果您希望使用 VPATH 风格的构建(源文件和对象文件在不同的目录中),可以使用:
$ scons -Y /path/to/serf/source
如果计划在系统上使用不同的路径安装库文件,请指定 LIBDIR。LIBDIR 的默认值为 /usr/local/lib。例如,对于 64 位的 GNU/Linux 系统:
$ scons PREFIX=/usr/ LIBDIR=/usr/lib64
在任何时候,都可以查看当前设置:
$ scons --help
1.3 运行测试套件
$ scons check
1.4 安装 Apache Serf
$ scons install
请注意,PREFIX 变量应在之前的 scons 调用中指定(并保存到 .saved_config),或者在安装命令行中指定:
$ scons PREFIX=/some/path install
分发包维护者通常将软件安装到构建根目录中,并在构建系统中使用如下命令,具体路径用占位符表示:
$ scons PREFIX=/usr/ LIBDIR=/usr/lib64
$ scons install --install-sandbox=/path/to/buildroot
1.5 清理构建
$ scons -c
2. 项目的使用说明
Apache Serf 是一个基于 Apache Portable Runtime(APR)库构建的高性能异步 HTTP 客户端库。它支持连接复用、异步读写、SSL/TLS 支持、完整的 HTTP 管道化、多种认证模式(基本、摘要、Kerberos/NTLM)和零拷贝支持以提高吞吐量。
3. 项目 API 使用文档
Apache Serf 的 API 文档目前没有在项目中直接提供,但是可以通过查看源代码和相关的开发文档来了解如何使用其 API。建议开发者参考 Apache Serf 的官方网站和社区邮件列表以获取更多帮助。
4. 项目安装方式
项目的安装方式已在“安装指南”中详细说明。请参照上述步骤进行安装。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00