Apache Serf 技术文档
1. 安装指南
1.1 SCons 构建系统
Apache Serf 使用 SCons 2.3 作为其构建系统。如果您的系统上没有安装 SCons,您需要先安装它。如果没有权限,您可以将“本地”版本下载并安装到您的家目录中。安装后,只需创建一个指向 /path/to/scons/scons.py 的 scons 的符号链接。
下载 SCons 本地包:
http://prdownloads.sourceforge.net/scons/scons-local-2.3.0.tar.gz
1.2 构建 Apache Serf
构建 Serf 的命令如下:
$ scons APR=/path/to/apr APU=/path/to/apu OPENSSL=/openssl/base PREFIX=/path/to/prefix
这些开关将被记录到 .saved_config 文件中,因此下次运行 scons 时无需再次指定。
PREFIX 应指定 Serf 应安装的位置。默认值为 /usr/local。
其他三个开关(APR、APU、OPENSSL)的默认值也是 /usr。
构建系统会在 $APR/bin/apr-1-config 搜索 apr-1-config,或者路径应指向 apr-1-config 本身。apu-1-config 的路径同理。
OPENSSL 应指定安装的根目录(例如 /opt/local)。头文件将在 OPENSSL/include 目录中找到,库文件在 OPENSSL/lib 目录中。
如果您希望使用 VPATH 风格的构建(源文件和对象文件在不同的目录中),可以使用:
$ scons -Y /path/to/serf/source
如果计划在系统上使用不同的路径安装库文件,请指定 LIBDIR。LIBDIR 的默认值为 /usr/local/lib。例如,对于 64 位的 GNU/Linux 系统:
$ scons PREFIX=/usr/ LIBDIR=/usr/lib64
在任何时候,都可以查看当前设置:
$ scons --help
1.3 运行测试套件
$ scons check
1.4 安装 Apache Serf
$ scons install
请注意,PREFIX 变量应在之前的 scons 调用中指定(并保存到 .saved_config),或者在安装命令行中指定:
$ scons PREFIX=/some/path install
分发包维护者通常将软件安装到构建根目录中,并在构建系统中使用如下命令,具体路径用占位符表示:
$ scons PREFIX=/usr/ LIBDIR=/usr/lib64
$ scons install --install-sandbox=/path/to/buildroot
1.5 清理构建
$ scons -c
2. 项目的使用说明
Apache Serf 是一个基于 Apache Portable Runtime(APR)库构建的高性能异步 HTTP 客户端库。它支持连接复用、异步读写、SSL/TLS 支持、完整的 HTTP 管道化、多种认证模式(基本、摘要、Kerberos/NTLM)和零拷贝支持以提高吞吐量。
3. 项目 API 使用文档
Apache Serf 的 API 文档目前没有在项目中直接提供,但是可以通过查看源代码和相关的开发文档来了解如何使用其 API。建议开发者参考 Apache Serf 的官方网站和社区邮件列表以获取更多帮助。
4. 项目安装方式
项目的安装方式已在“安装指南”中详细说明。请参照上述步骤进行安装。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00