Lexical项目升级至0.17.1版本时遇到的构建问题分析
在Lexical富文本编辑器框架的0.17.1版本升级过程中,开发者可能会遇到一个特定的构建错误。这个问题主要出现在持续集成(CI)环境中,当使用pnpm作为包管理器时,构建过程会因模块导入错误而失败。
问题现象
当开发者将Lexical相关包从0.17.0升级到0.17.1版本时,CI环境中会出现以下错误提示:
Attempted import error: '$getClipboardDataFromSelection' is not exported from '@lexical/clipboard'
这个错误表明构建系统无法从@lexical/clipboard模块中找到预期的导出项$getClipboardDataFromSelection。
问题根源
经过分析,这个问题源于Lexical框架的模块依赖关系。在0.17.1版本中,@lexical/table模块的LexicalTable.prod.mjs文件尝试从@lexical/clipboard导入$getClipboardDataSelection函数,但该函数可能未被正确导出或存在版本不匹配。
值得注意的是,这个问题在本地开发环境中通常不会出现,只在CI环境中显现,这表明它可能与依赖解析或缓存机制有关。
解决方案
根据Lexical项目维护者的建议,解决此问题的关键在于确保所有Lexical相关模块都统一升级到相同的0.17.1版本。特别是,开发者需要检查是否遗漏了@lexical/clipboard模块的更新。
Lexical作为一个模块化框架,其各个包之间存在紧密的依赖关系。不同版本的混合使用可能导致API不兼容,因此维护版本一致性至关重要。
最佳实践建议
-
统一版本管理:在升级Lexical时,应该同时更新所有相关模块,包括但不限于@lexical/code、@lexical/link、@lexical/list等核心模块,以及可能被间接依赖的模块如@lexical/clipboard。
-
CI环境配置:确保CI环境中的依赖解析机制与本地环境一致。对于使用pnpm的项目,可以考虑清除缓存并重新安装依赖。
-
依赖检查工具:使用如npm ls或pnpm why等工具检查依赖树,确认所有Lexical相关模块都处于相同版本。
-
构建前清理:在CI构建前执行清理操作,删除node_modules和lock文件,确保依赖解析从零开始。
总结
Lexical框架的模块化设计带来了灵活性,但也要求开发者注意版本一致性。这次0.17.1版本的构建问题提醒我们,在升级这类模块化框架时,需要全面考虑所有相关模块的版本兼容性,特别是在自动化构建环境中。通过遵循统一的版本管理策略和仔细检查依赖关系,可以有效避免类似问题的发生。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00