OR-Tools路由求解器中关于车辆路径问题(VRP)的约束设置技巧
2025-05-19 19:49:55作者:尤峻淳Whitney
问题背景
在使用OR-Tools解决车辆路径问题(VRP)时,开发者经常需要设置各种约束条件来满足实际业务需求。一个常见的需求是限制从仓库(depot)到某些节点的直接连接,特别是当这些节点距离仓库超过某个阈值时。
常见误区
许多开发者会尝试使用以下代码来限制从仓库到特定节点的连接:
for node in range(1, len(data['distance_matrix'])):
target_index = manager.NodeToIndex(node)
if distance_callback(depot_index, target_index) > delta:
routing.solver().Add(
routing.NextVar(depot_index) != target_index
)
这种方法看似合理,但实际上存在一个关键问题:在OR-Tools的路由模型中,不能直接使用NodeToIndex(depot)来获取仓库节点的索引。
正确方法
正确的做法是使用Start(vehicle)或End(vehicle)方法来获取特定车辆的起始或结束节点索引。这是因为:
- 在OR-Tools的路由模型中,每个车辆都有自己的起始和结束节点
- 仓库节点通常被建模为车辆的起始和/或结束点
- 直接使用节点索引可能会导致模型理解错误
修正后的代码应该类似于:
for vehicle_id in range(data['num_vehicles']):
start_index = routing.Start(vehicle_id)
for node in range(1, len(data['distance_matrix'])):
target_index = manager.NodeToIndex(node)
if distance_callback(start_index, target_index) > delta:
routing.solver().Add(
routing.NextVar(start_index) != target_index
)
深入理解
这种差异源于OR-Tools路由模型的设计理念:
- 多车辆支持:OR-Tools的路由模型天然支持多车辆,因此仓库节点实际上是每个车辆的起始/终止点
- 模型抽象:路由模型将问题抽象为寻找各车辆路径的连续序列
- 索引转换:需要使用
NodeToIndex将原始节点编号转换为模型内部索引,但对仓库节点需要使用特定方法
实际应用建议
在实际应用中,设置此类约束时还应注意:
- 考虑是否需要对所有车辆设置相同的约束
- 评估约束对求解性能的影响
- 可能需要结合其他约束条件,如时间窗、容量限制等
- 对于大规模问题,这类约束可能导致求解时间显著增加
总结
正确理解OR-Tools路由模型中节点索引的处理方式对于设置有效约束至关重要。通过使用Start(vehicle)或End(vehicle)而非直接节点索引,可以确保约束按预期工作,特别是在多车辆场景下。这种细微但关键的差异体现了OR-Tools路由模型的强大抽象能力,也提醒开发者需要深入理解工具的内部工作机制。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
581
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
366
仓颉编程语言运行时与标准库。
Cangjie
130
379
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205