srs-bench 的安装和配置教程
2025-05-08 09:34:02作者:伍霜盼Ellen
1. 项目基础介绍和主要编程语言
srs-bench 是一个用于测试和评估 SRS (Simple Realtime Server) 性能的工具。SRS 是一个开源的实时流媒体服务器,支持 RTMP、HTTP-FLV、HLS 等流媒体协议。srs-bench 主要用于压力测试和性能分析,帮助开发者了解 SRS 服务器在不同负载下的表现。该项目主要使用 C++ 编程语言开发。
2. 项目使用的关键技术和框架
srs-bench 使用了以下关键技术和框架:
- C++11/14/17: 项目使用 C++11/14/17 标准的语法和特性进行开发,以确保代码的现代化和性能。
- STL(Standard Template Library): 使用了 C++ 标准库中的容器、算法和迭代器等,以简化代码的编写和维护。
- Boost.Asio: 用于网络编程,提供了异步 I/O 操作,可以有效地管理网络连接和数据处理。
- Google Test: 用于单元测试,确保代码的稳定性和可靠性。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装 srs-bench 之前,请确保您的系统满足以下要求:
- 操作系统:Linux 或 macOS
- 编译器:支持 C++11/14/17 的 GCC 或 Clang
- 依赖库:Boost (建议版本 1.59 或以上)
安装步骤
-
安装 Boost 库
首先需要从官方网站下载 Boost 库的源码,然后编译安装。
# 下载 Boost 源码 wget https://boost.org/dist/boost/<BOOST_VERSION>.tar.gz tar zxvf <BOOST_VERSION>.tar.gz cd boost_<BOOST_VERSION> # 编译 Boost ./bootstrap.sh ./b2 install # 将 Boost 库路径加入到环境变量中(根据实际路径修改) echo "export BOOST_ROOT=/path/to/boost_<BOOST_VERSION>" >> ~/.bashrc source ~/.bashrc替换
<BOOST_VERSION>为实际的版本号,例如1.69.0。 -
安装编译依赖
根据您的操作系统安装编译所需的依赖。
对于 Ubuntu 或 Debian 系统:
sudo apt-get install build-essential libboost-all-dev对于 CentOS 或 RHEL 系统:
sudo yum install gcc-c++ boost boost-thread boost-date-time boost-system -
克隆 srs-bench 代码
从 GitHub 克隆 srs-bench 的源码。
git clone https://github.com/ossrs/srs-bench.git cd srs-bench -
编译 srs-bench
使用 CMake 构建项目。
mkdir build cd build cmake .. make -
运行 srs-bench
编译完成后,您可以在
build目录下找到可执行的 srs-bench 程序。cd bin ./srs_bench运行程序后,它将开始对 SRS 服务器进行性能测试。
以上就是 srs-bench 的安装和配置指南。按照这些步骤,您应该能够在自己的系统上成功安装并运行 srs-bench。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355