srs-bench 的安装和配置教程
2025-05-08 06:46:55作者:伍霜盼Ellen
1. 项目基础介绍和主要编程语言
srs-bench 是一个用于测试和评估 SRS (Simple Realtime Server) 性能的工具。SRS 是一个开源的实时流媒体服务器,支持 RTMP、HTTP-FLV、HLS 等流媒体协议。srs-bench 主要用于压力测试和性能分析,帮助开发者了解 SRS 服务器在不同负载下的表现。该项目主要使用 C++ 编程语言开发。
2. 项目使用的关键技术和框架
srs-bench 使用了以下关键技术和框架:
- C++11/14/17: 项目使用 C++11/14/17 标准的语法和特性进行开发,以确保代码的现代化和性能。
- STL(Standard Template Library): 使用了 C++ 标准库中的容器、算法和迭代器等,以简化代码的编写和维护。
- Boost.Asio: 用于网络编程,提供了异步 I/O 操作,可以有效地管理网络连接和数据处理。
- Google Test: 用于单元测试,确保代码的稳定性和可靠性。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装 srs-bench 之前,请确保您的系统满足以下要求:
- 操作系统:Linux 或 macOS
- 编译器:支持 C++11/14/17 的 GCC 或 Clang
- 依赖库:Boost (建议版本 1.59 或以上)
安装步骤
-
安装 Boost 库
首先需要从官方网站下载 Boost 库的源码,然后编译安装。
# 下载 Boost 源码 wget https://boost.org/dist/boost/<BOOST_VERSION>.tar.gz tar zxvf <BOOST_VERSION>.tar.gz cd boost_<BOOST_VERSION> # 编译 Boost ./bootstrap.sh ./b2 install # 将 Boost 库路径加入到环境变量中(根据实际路径修改) echo "export BOOST_ROOT=/path/to/boost_<BOOST_VERSION>" >> ~/.bashrc source ~/.bashrc替换
<BOOST_VERSION>为实际的版本号,例如1.69.0。 -
安装编译依赖
根据您的操作系统安装编译所需的依赖。
对于 Ubuntu 或 Debian 系统:
sudo apt-get install build-essential libboost-all-dev对于 CentOS 或 RHEL 系统:
sudo yum install gcc-c++ boost boost-thread boost-date-time boost-system -
克隆 srs-bench 代码
从 GitHub 克隆 srs-bench 的源码。
git clone https://github.com/ossrs/srs-bench.git cd srs-bench -
编译 srs-bench
使用 CMake 构建项目。
mkdir build cd build cmake .. make -
运行 srs-bench
编译完成后,您可以在
build目录下找到可执行的 srs-bench 程序。cd bin ./srs_bench运行程序后,它将开始对 SRS 服务器进行性能测试。
以上就是 srs-bench 的安装和配置指南。按照这些步骤,您应该能够在自己的系统上成功安装并运行 srs-bench。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C026
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869