AWS Deep Learning Containers发布PyTorch 2.6.0 ARM64 CPU推理容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习环境容器镜像,这些镜像经过优化,可以直接在AWS的各种计算服务上运行,包括Amazon SageMaker、Amazon ECS和Amazon EKS等。这些容器镜像包含了主流深度学习框架的最新版本,以及必要的依赖库和工具,大大简化了深度学习环境的部署过程。
本次发布的v1.18版本主要针对PyTorch框架的ARM64架构CPU推理场景,提供了基于Ubuntu 22.04操作系统、Python 3.12环境的预构建容器镜像。这个镜像特别适合在基于ARM架构的AWS实例上运行PyTorch模型推理任务。
镜像技术细节
该容器镜像的核心组件包括:
-
PyTorch 2.6.0:这是PyTorch框架的最新稳定版本之一,针对CPU进行了优化编译。PyTorch作为当前最流行的深度学习框架之一,其2.6.0版本带来了性能改进和新特性。
-
Python 3.12:镜像内置了Python 3.12环境,这是Python的最新稳定版本之一,提供了更好的性能和语言特性。
-
Ubuntu 22.04 LTS:作为基础操作系统,提供了稳定可靠的Linux环境支持。
-
配套工具链:
- torchvision 0.21.0:计算机视觉相关操作的扩展库
- torchaudio 2.6.0:音频处理相关功能的扩展库
- torch-model-archiver 0.12.0:用于打包PyTorch模型的工具
- torchserve 0.12.0:PyTorch模型服务框架
关键软件包版本
镜像中预装了多个重要的Python包和系统库:
-
数据处理与科学计算:
- NumPy 2.2.3:高性能多维数组计算库
- pandas 2.2.3:强大的数据分析工具
- scikit-learn 1.6.1:机器学习算法库
- scipy 1.15.2:科学计算工具集
-
计算机视觉:
- OpenCV 4.11.0:计算机视觉处理库
- Pillow 11.1.0:图像处理库
-
AWS相关工具:
- boto3 1.36.24:AWS SDK for Python
- awscli 1.37.24:AWS命令行工具
-
系统依赖:
- GCC 11开发库
- C++标准库
适用场景
这个ARM64架构的PyTorch CPU推理镜像特别适合以下场景:
-
成本敏感型推理服务:在不需要GPU加速的推理场景下,使用ARM架构的CPU实例可以显著降低成本。
-
边缘计算:ARM架构因其低功耗特性,非常适合边缘计算场景,这个镜像可以方便地部署到边缘设备。
-
模型服务:结合内置的torchserve工具,可以快速搭建PyTorch模型服务。
-
批处理推理:对于不要求实时性的批量推理任务,使用CPU实例更加经济高效。
技术优势
-
官方优化:AWS团队对镜像进行了专门优化,确保在AWS基础设施上获得最佳性能。
-
开箱即用:预装了所有必要的依赖项,省去了复杂的环境配置过程。
-
版本兼容性:所有组件版本经过严格测试,确保相互兼容。
-
安全更新:基于Ubuntu 22.04 LTS,可以获得长期安全支持。
-
轻量级:针对推理场景优化,去除了不必要的开发工具,保持镜像精简。
对于需要在ARM架构上部署PyTorch模型推理服务的用户,这个预构建的容器镜像提供了极大的便利,可以快速启动服务而无需担心环境配置问题。AWS Deep Learning Containers的这种定期更新机制,也确保了用户能够及时获得最新框架版本的支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









