深入解析tree.hh:C++中的STL风格N叉树容器库
2025-05-31 00:52:43作者:伍希望
前言
在C++标准模板库(STL)中,我们熟知的容器如vector、list、map等都是线性数据结构。然而在实际开发中,我们经常需要处理树形结构的数据。tree.hh库正是为了解决这一问题而设计的,它提供了一个STL风格的N叉树容器类,让开发者能够以熟悉的方式处理树形数据。
核心概念
树结构基础
tree.hh库中的树结构遵循以下术语:
- 节点(Node):树中的基本元素,存储数据
- 子节点(Children):直接位于某节点下方的节点
- 兄弟节点(Siblings):位于同一层级且拥有相同父节点的节点
- 头节点(Head):没有父节点的顶层节点集合
模板化设计
与STL容器类似,tree.hh采用模板设计,可以存储任意类型的数据:
tree<string> my_tree; // 存储字符串的树
tree<int> int_tree; // 存储整数的树
迭代器系统
tree.hh提供了多种迭代器类型,满足不同遍历需求:
1. 深度优先遍历
- 前序遍历(pre_order_iterator):先访问节点,再访问子节点
访问顺序:root → A → B → C → D → E → F - 后序遍历(post_order_iterator):先访问子节点,再访问节点
访问顺序:B → C → A → E → F → D → root
2. 广度优先遍历(breadth_first_iterator)
按层级从上到下访问节点:
访问顺序:root → A → D → B → C → E → F
3. 特殊用途迭代器
- 兄弟迭代器(sibling_iterator):仅遍历同一层级的兄弟节点
- 固定深度迭代器(fixed_depth_iterator):遍历特定深度的所有节点
- 叶子迭代器(leaf_iterator):仅遍历没有子节点的叶子节点
基本操作指南
初始化树结构
tree<string> my_tree; // 创建空树
my_tree.set_head("root"); // 设置根节点
// 或者使用构造函数初始化
tree<string> new_tree("root"); // 直接创建带根节点的树
添加节点
auto root = my_tree.begin(); // 获取根节点迭代器
my_tree.append_child(root, "child1"); // 添加子节点
my_tree.append_child(root, "child2");
遍历树结构
// 前序遍历
for(auto it = my_tree.begin(); it != my_tree.end(); ++it) {
cout << *it << endl;
}
// 后序遍历
for(auto it = my_tree.begin_post(); it != my_tree.end_post(); ++it) {
cout << *it << endl;
}
高级功能
子树操作
// 提取子树
auto subtree = my_tree.subtree(child_it, my_tree.end());
// 移动子树
my_tree.move_after(target_it, source_it);
树结构修改
// 删除节点及其子树
my_tree.erase(node_it);
// 仅删除子节点
my_tree.erase_children(node_it);
// 扁平化子树
my_tree.flatten(parent_it);
排序功能
// 简单排序
my_tree.sort(begin_it, end_it);
// 自定义排序
struct MyCompare {
bool operator()(const string& a, const string& b) {
return a.length() < b.length();
}
};
my_tree.sort(begin_it, end_it, MyCompare(), true); // 深度排序
路径操作
tree.hh提供了独特的路径功能,可以在不同树实例间定位相同结构的节点:
// 获取路径
auto path = my_tree.path_from_iterator(node_it, root_it);
// 从路径恢复迭代器
auto new_it = my_tree.iterator_from_path(path, root_it);
性能考虑
- 迭代器操作:大多数迭代器操作都是O(1)时间复杂度
- 树修改操作:插入、删除等操作性能取决于树的大小和结构
- 排序操作:时间复杂度与普通排序算法相同,但会保持树结构完整
最佳实践
- 根据遍历需求选择合适的迭代器类型
- 对大型树结构考虑使用路径操作而非直接存储迭代器
- 修改树结构时注意迭代器失效问题
- 优先使用库提供的专用算法而非STL通用算法
结语
tree.hh库为C++开发者提供了处理树形数据的强大工具,其STL风格的设计使得学习曲线平缓。通过灵活的迭代器系统和丰富的操作方法,开发者可以高效地实现各种树形数据结构的操作。无论是简单的层次数据还是复杂的树形算法,tree.hh都能提供良好的支持。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1