首页
/ AdaMix 开源项目使用教程

AdaMix 开源项目使用教程

2024-10-10 07:58:54作者:宣海椒Queenly

1. 项目介绍

AdaMix 是由微软开发的一个开源项目,旨在通过混合适应(Mixture-of-Adaptations)的方式实现参数高效模型调优。该项目基于论文 AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning 实现,主要用于自然语言处理(NLP)任务。AdaMix 通过在预训练模型中引入多个适配器(Adapters),并结合这些适配器的权重来提高模型在特定任务上的性能。

2. 项目快速启动

环境准备

首先,确保你已经安装了 Python 和 Conda。然后,按照以下步骤创建并激活 Conda 环境:

conda env create -f environment.yml
conda activate adamix

安装依赖

在激活的环境中,安装项目的依赖:

pip install -e .

快速启动示例

以下是一个快速启动示例,使用 AdaMix 在 MNLI 任务上进行训练和评估:

export num_gpus=1
export PYTHONHASHSEED=0
task_name=mnli
model=roberta-large
export output_dir="./models/$[model]/$[task_name]"

python -m torch.distributed.launch --nproc_per_node=$num_gpus \
examples/text-classification/run_glue.py \
--model_name_or_path $model \
--task_name $task_name \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 64 \
--per_device_eval_batch_size 32 \
--learning_rate 3e-4 \
--num_train_epochs 20 \
--output_dir $output_dir/model \
--overwrite_output_dir \
--logging_steps 1000 \
--logging_dir $output_dir/log \
--evaluation_strategy epoch \
--save_strategy epoch \
--warmup_ratio 0.06 \
--apply_expert_soup \
--adapter_size 16 \
--num_experts 4 \
--seed 0 \
--inference_level 3 \
--weight_decay 0.1 \
--sharing_up 1 \
--sharing_down 0 \
--use_consistency_loss 1

3. 应用案例和最佳实践

应用案例

AdaMix 主要应用于自然语言理解(NLU)任务,如 GLUE 基准测试中的多个任务。通过在预训练模型(如 BERT 和 RoBERTa)中引入适配器,AdaMix 能够在不显著增加模型参数的情况下,提升模型在特定任务上的性能。

最佳实践

  1. 适配器数量选择:根据任务的复杂性和计算资源的可用性,选择合适的适配器数量。通常,适配器数量越多,模型性能越好,但计算成本也会增加。
  2. 权重共享策略:在 AdaMix 中,可以通过 sharing_upsharing_down 参数控制适配器之间的权重共享策略。合理配置这些参数可以提高模型的参数效率。
  3. 一致性损失:通过启用一致性损失(use_consistency_loss),可以进一步提高模型的稳定性和性能。

4. 典型生态项目

AdaMix 作为一个参数高效模型调优工具,可以与以下典型的生态项目结合使用:

  1. Hugging Face Transformers:AdaMix 基于 Hugging Face 的 Transformers 库实现,可以无缝集成到现有的 NLP 工作流中。
  2. LoRA:微软的另一个开源项目 LoRA(Low-Rank Adaptation),与 AdaMix 类似,旨在通过低秩适配器提高模型的参数效率。
  3. GLUE Benchmark:AdaMix 在 GLUE 基准测试中的多个任务上进行了实验,可以作为评估模型性能的标准工具。

通过结合这些生态项目,AdaMix 可以进一步扩展其应用场景,提升模型在各种 NLP 任务中的表现。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5