AdaMix 开源项目使用教程
2024-10-10 04:29:40作者:宣海椒Queenly
1. 项目介绍
AdaMix 是由微软开发的一个开源项目,旨在通过混合适应(Mixture-of-Adaptations)的方式实现参数高效模型调优。该项目基于论文 AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning 实现,主要用于自然语言处理(NLP)任务。AdaMix 通过在预训练模型中引入多个适配器(Adapters),并结合这些适配器的权重来提高模型在特定任务上的性能。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 和 Conda。然后,按照以下步骤创建并激活 Conda 环境:
conda env create -f environment.yml
conda activate adamix
安装依赖
在激活的环境中,安装项目的依赖:
pip install -e .
快速启动示例
以下是一个快速启动示例,使用 AdaMix 在 MNLI 任务上进行训练和评估:
export num_gpus=1
export PYTHONHASHSEED=0
task_name=mnli
model=roberta-large
export output_dir="./models/$[model]/$[task_name]"
python -m torch.distributed.launch --nproc_per_node=$num_gpus \
examples/text-classification/run_glue.py \
--model_name_or_path $model \
--task_name $task_name \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 64 \
--per_device_eval_batch_size 32 \
--learning_rate 3e-4 \
--num_train_epochs 20 \
--output_dir $output_dir/model \
--overwrite_output_dir \
--logging_steps 1000 \
--logging_dir $output_dir/log \
--evaluation_strategy epoch \
--save_strategy epoch \
--warmup_ratio 0.06 \
--apply_expert_soup \
--adapter_size 16 \
--num_experts 4 \
--seed 0 \
--inference_level 3 \
--weight_decay 0.1 \
--sharing_up 1 \
--sharing_down 0 \
--use_consistency_loss 1
3. 应用案例和最佳实践
应用案例
AdaMix 主要应用于自然语言理解(NLU)任务,如 GLUE 基准测试中的多个任务。通过在预训练模型(如 BERT 和 RoBERTa)中引入适配器,AdaMix 能够在不显著增加模型参数的情况下,提升模型在特定任务上的性能。
最佳实践
- 适配器数量选择:根据任务的复杂性和计算资源的可用性,选择合适的适配器数量。通常,适配器数量越多,模型性能越好,但计算成本也会增加。
- 权重共享策略:在 AdaMix 中,可以通过
sharing_up和sharing_down参数控制适配器之间的权重共享策略。合理配置这些参数可以提高模型的参数效率。 - 一致性损失:通过启用一致性损失(
use_consistency_loss),可以进一步提高模型的稳定性和性能。
4. 典型生态项目
AdaMix 作为一个参数高效模型调优工具,可以与以下典型的生态项目结合使用:
- Hugging Face Transformers:AdaMix 基于 Hugging Face 的 Transformers 库实现,可以无缝集成到现有的 NLP 工作流中。
- LoRA:微软的另一个开源项目 LoRA(Low-Rank Adaptation),与 AdaMix 类似,旨在通过低秩适配器提高模型的参数效率。
- GLUE Benchmark:AdaMix 在 GLUE 基准测试中的多个任务上进行了实验,可以作为评估模型性能的标准工具。
通过结合这些生态项目,AdaMix 可以进一步扩展其应用场景,提升模型在各种 NLP 任务中的表现。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248