在ncnn项目中解决自定义LayerNorm层转换问题
2025-05-10 17:32:41作者:宣聪麟
ncnn
NCNN是一个轻量级的神经网络推理引擎,专为移动端和嵌入式设备优化。它支持多种硬件平台和深度学习框架,如ARM CPU、Mali GPU、Android、iOS等。特点:高效、低功耗、跨平台。
问题背景
在深度学习模型部署过程中,将PyTorch模型转换为ncnn格式时,经常会遇到自定义层无法直接转换的问题。本文以一个实际案例为例,详细记录了如何解决自定义LayerNorm层在ncnn转换过程中出现的"LayerNormalization not supported yet"错误。
问题现象
用户在将PyTorch模型转换为ncnn格式时,发现模型输出全部为NaN值。经过排查,发现问题的根源在于模型中使用了自定义的LayerNorm2d_Sc层。该层的实现与标准LayerNorm有所不同,在PyTorch中可以正常工作,但在转换为ncnn格式时出现了问题。
自定义LayerNorm实现分析
原始的自定义LayerNorm实现如下:
class LayerNorm2d_Sc(nn.Module):
def __init__(self, channels, eps=1e-6):
super(LayerNorm2d_Sc, self).__init__()
self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
self.eps = eps
self.torch_layernorm = torch.nn.LayerNorm(channels, eps=eps, elementwise_affine=False)
def forward(self, x):
C = x.shape[1]
x_ = x.clone()
mu = x_.mean(dim=1, keepdim=True)
var = (x_ - mu).pow(2).mean(dim=1, keepdim=True)
y = (x_ - mu) / (var + self.eps).sqrt()
y = self.weight.view(1, C, 1, 1) * y + self.bias.view(1, C, 1, 1)
return y
该实现与标准LayerNorm的主要区别在于:
- 专门针对2D输入进行了优化
- 使用了独立的权重和偏置参数
- 计算均值和方差时保持了维度
转换过程中的问题
使用onnx2ncnn工具转换时,会报出"LayerNormalization not supported yet"的错误,导致转换后的模型无法正常工作。尝试了以下解决方案:
- 修改ncnn源码:在ncnn的LayerNorm.cpp中添加了对通道维度归一化的支持
- 添加自定义层:按照ncnn文档创建了LayerNormalization.h和LayerNormalization.cpp文件,并在CMakeLists.txt中添加了相应配置
- 重新编译:确保修改后的代码被正确编译进ncnn
然而,这些方法都未能解决问题,转换工具仍然报告不支持LayerNormalization操作。
最终解决方案
经过多次尝试,最终采用了PNNX工具成功解决了问题。PNNX是专门为PyTorch到ncnn转换设计的工具,相比onnx2ncnn具有更好的兼容性和灵活性。
使用PNNX转换的步骤如下:
- 安装PNNX工具
- 使用简单的命令行即可完成转换
PNNX能够更好地处理PyTorch模型中的自定义操作,避免了中间格式转换带来的兼容性问题。
经验总结
- 对于包含自定义操作的PyTorch模型,优先考虑使用PNNX而非ONNX中间格式进行转换
- ncnn的自定义层扩展需要确保名称完全匹配,包括大小写
- 模型转换过程中,维度顺序的处理需要特别注意,ncnn通常使用CHW格式
- 当遇到转换问题时,可以尝试从中间层开始逐步排查,定位问题发生的具体位置
通过这个案例,我们了解到在模型部署过程中,选择合适的转换工具和正确处理自定义层是实现成功部署的关键。PNNX作为PyTorch到ncnn的直接转换工具,在兼容性方面表现优异,是解决此类问题的有效方案。
ncnn
NCNN是一个轻量级的神经网络推理引擎,专为移动端和嵌入式设备优化。它支持多种硬件平台和深度学习框架,如ARM CPU、Mali GPU、Android、iOS等。特点:高效、低功耗、跨平台。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
209
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194