Pebble存储引擎中的压缩并发与空间放大问题优化
2025-06-08 13:25:13作者:邵娇湘
背景介绍
Pebble作为CockroachDB的底层存储引擎,其性能直接影响到数据库的整体表现。在LSM树结构的存储引擎中,压缩(compaction)是一个核心操作,它负责合并数据文件、清理过期数据并维持良好的读取性能。然而,当前的压缩并发控制机制存在一个潜在问题——未能充分考虑由无效数据导致的空间放大(space amplification)问题。
当前机制分析
Pebble当前使用estimatedCompactionDebt(估计的压缩债务)和L0子级别来决定压缩并发度。这个估计值基于各级别的未补偿大小(uncompensated sizes),并考虑了写入放大(write amplification)效应,但忽略了由无效数据导致的空间放大问题。
具体来说,系统通过以下方式处理大型标记数据:
- 压缩评分机制使用补偿大小(compensated sizes),确保高层级的大型标记能够被压缩到下层
- 对于旧版本的数据,仅清理(elision-only)的压缩可以确保L6层的SSTable被选中进行压缩
然而,由于estimatedCompactionDebt不包含这些因素,可能导致上述压缩操作无法及时执行,特别是第二种非基于评分的压缩类型。
问题影响
当系统无法及时处理无效数据时,会导致以下问题:
- 存储空间利用率下降,实际存储的有效数据比例降低
- 长期存在的标记数据可能影响查询性能
- 在极端情况下可能导致存储空间被无效数据大量占用
解决方案
建议在压缩并发控制中增加对无效数据的考量,具体方案是:
额外压缩槽位 = Σ(点删除字节估计 + 范围删除字节估计) × 4 / LSM总大小
这个公式意味着当无效数据达到LSM总大小的25%时,系统将增加一个额外的压缩槽位。虽然这些压缩可能不会立即执行,但额外的并发度将确保:
- 压缩评分逐渐下降
- 最终系统会执行必要的压缩操作
- 无效数据能够得到及时清理
实现细节
在技术实现上,需要考虑以下关键点:
- 准确估计点删除和范围删除的字节数
- 合理计算LSM树的总大小
- 动态调整压缩并发度,避免过度消耗系统资源
- 确保新增的压缩槽位能够有效针对包含大量无效数据的SSTable
性能考量
引入无效数据感知的压缩并发控制后,系统将:
- 更及时地回收存储空间
- 维持更稳定的读写性能
- 在存在大量删除操作的场景下表现更优
- 通过动态调整避免对正常压缩操作造成显著影响
总结
Pebble存储引擎通过改进压缩并发控制机制,使其能够感知由无效数据导致的空间放大问题,从而提升存储效率和应用性能。这一优化特别适合存在大量删除和更新操作的工作负载,确保系统能够及时回收存储空间,同时维持稳定的服务质量。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19