OpenGVLab/Ask-Anything项目中冻结训练与权重加载的技术解析
2025-06-25 11:57:21作者:戚魁泉Nursing
在OpenGVLab的Ask-Anything项目开发过程中,冻结训练是一种常见的优化策略,特别是在计算资源有限的情况下。本文将深入探讨冻结训练的实现方法、可能遇到的问题以及解决方案。
冻结训练的实现方法
冻结训练的核心思想是固定模型的大部分参数,只训练特定的层或模块。在Ask-Anything项目中,开发者通常采用以下方式实现冻结训练:
- 通过配置文件设置freeze_vit和freeze_qformer为True
- 添加自定义的freeze_lora参数
- 在模型代码中实现参数冻结逻辑
具体实现时,开发者会在模型初始化后遍历所有参数,将requires_grad属性设置为False,同时将模型设置为eval模式并禁用train方法。这种实现方式可以有效减少显存占用和计算量。
训练过程中的警告分析
在冻结训练过程中,系统可能会输出"None of the inputs have requires_grad=True. Gradients will be None"的警告信息。这个警告表明在当前计算图中,所有输入张量都没有启用梯度计算。在冻结训练的场景下,这个警告是可以接受的,因为它反映了我们预期的行为——大部分参数确实不需要计算梯度。
训练后模型推理问题
冻结训练完成后,开发者可能会遇到推理时输出乱码的问题。这通常是由于权重加载方式不当造成的。需要特别注意:
- 冻结训练后保存的checkpoint只包含被更新的参数(通常是未冻结的部分)
- 直接加载训练后的checkpoint会导致模型大部分权重缺失
- 正确的做法是先加载原始预训练权重,再加载训练后的checkpoint
最佳实践建议
基于项目经验,建议开发者在进行冻结训练时:
- 明确记录哪些部分被冻结,哪些部分需要训练
- 实现自定义的权重加载逻辑,确保完整恢复模型状态
- 在训练脚本中添加适当的日志,记录参数冻结情况
- 测试时先验证小规模数据的训练效果
通过遵循这些实践,可以确保冻结训练既节省资源又能获得预期效果。对于Ask-Anything这类多模态大模型项目,合理的冻结策略是平衡训练效率和模型性能的关键。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355