botocore 项目安装与使用教程
1. 项目目录结构及介绍
botocore 项目的目录结构如下:
botocore/
├── botocore/
│ ├── __init__.py
│ ├── awsrequest.py
│ ├── config.py
│ ├── eventstream.py
│ ├── exceptions.py
│ ├── parsers.py
│ ├── retryhandler.py
│ ├── session.py
│ ├── signers.py
│ ├── utils.py
│ └── ...
├── docs/
│ ├── changelog.rst
│ ├── code_of_conduct.md
│ ├── contributing.rst
│ ├── license.txt
│ ├── manifest.in
│ ├── notice
│ ├── readme.rst
│ └── ...
├── scripts/
│ ├── build_models.py
│ ├── generate_docs.py
│ └── ...
├── tests/
│ ├── integration/
│ ├── unit/
│ └── ...
├── codecov.yml
├── coveragerc
├── git-blame-ignore-revs
├── gitignore
├── pre-commit-config.yaml
├── pyproject.toml
├── requirements-dev-lock.txt
├── requirements-dev.txt
├── requirements-docs-lock.txt
├── requirements-docs.txt
├── requirements.txt
├── setup.cfg
├── setup.py
└── tox.ini
目录结构介绍
botocore/: 包含 botocore 的核心代码,包括与 AWS 服务交互的低级接口实现。docs/: 包含项目的文档文件,如变更日志、贡献指南、许可证等。scripts/: 包含用于生成模型和文档的脚本。tests/: 包含项目的单元测试和集成测试。requirements-*.txt: 包含项目的依赖文件,用于开发、文档生成等。setup.py: 项目的安装脚本。tox.ini: 用于配置 tox 测试环境的文件。
2. 项目启动文件介绍
botocore 项目的启动文件主要是 botocore/__init__.py 和 botocore/session.py。
botocore/__init__.py
这是 botocore 包的入口文件,负责初始化 botocore 的核心功能。它导入了 botocore 的主要模块和类,使得用户可以通过 import botocore 来使用 botocore 的功能。
botocore/session.py
session.py 文件定义了 Session 类,这是 botocore 的核心类之一。Session 类负责管理 AWS 服务的配置、凭证和客户端的创建。用户可以通过 Session 类来创建与 AWS 服务的客户端,并进行交互。
3. 项目的配置文件介绍
botocore 项目的配置文件主要包括以下几个:
setup.py
setup.py 是 Python 项目的标准安装脚本,用于定义项目的元数据、依赖关系和安装过程。用户可以通过运行 python setup.py install 来安装 botocore。
requirements.txt
requirements.txt 文件列出了 botocore 项目运行所需的所有依赖包及其版本。用户可以通过 pip install -r requirements.txt 来安装这些依赖。
setup.cfg
setup.cfg 是 setuptools 的配置文件,用于定义项目的构建和打包选项。它包含了项目的元数据、构建选项和测试配置等。
tox.ini
tox.ini 文件用于配置 tox 测试环境。tox 是一个用于自动化测试的工具,可以确保项目在多个 Python 版本和环境中都能正常运行。
pyproject.toml
pyproject.toml 是 Python 项目的配置文件,用于定义项目的构建系统和依赖管理工具。它替代了传统的 setup.py 和 requirements.txt,提供了更现代化的项目配置方式。
通过以上配置文件,用户可以方便地安装、配置和测试 botocore 项目。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00