GLM-4-9B模型在Tesla P40多卡环境下的部署问题分析与解决方案
2025-06-03 23:33:50作者:江焘钦
问题背景
在部署GLM-4-9B大语言模型时,研究人员发现了一个有趣的现象:当使用两张Tesla P40显卡(24GB显存)时,模型能够正常运行;但当增加到三张Tesla P40显卡时,系统却出现了异常报错。这一现象揭示了在特定硬件环境下部署大型语言模型可能遇到的兼容性问题。
错误现象分析
在Windows Server 2022系统环境下,当尝试使用三张Tesla P40显卡运行GLM-4-9B模型时,系统报出以下关键错误信息:
- 警告信息:Torch未被编译为支持flash attention的状态
- 核心错误:概率张量包含inf(无穷大)、nan(非数字)或小于0的元素
- 具体位置:在采样生成阶段的多项式分布采样过程中出现异常
可能原因探究
经过技术分析,我们认为导致这一问题的可能原因包括:
- 硬件兼容性问题:Tesla P40属于较老的GPU架构,可能在多卡并行计算时存在某些兼容性限制
- 驱动与CUDA版本匹配:虽然系统安装了CUDA 12.1,但老款显卡可能需要特定版本的驱动支持
- Windows系统限制:Windows系统在GPU资源管理和分配方面可能与Linux存在差异
- 显存管理异常:在多卡环境下,显存分配或数据传输可能出现问题
解决方案验证
研究人员尝试了以下解决方案并验证了效果:
- 更换操作系统:从Windows Server 2022迁移到Ubuntu系统后,问题得到解决
- 调整显卡数量:保持在2张Tesla P40显卡的配置下可以稳定运行
- 驱动更新:确保使用最新版的NVIDIA驱动(虽然在此案例中未完全解决问题)
技术建议
对于需要在类似环境下部署GLM-4-9B模型的技术人员,我们建议:
- 优先选择Linux系统:特别是Ubuntu等主流发行版,对GPU支持更完善
- 合理规划显卡配置:不是显卡数量越多越好,需要考虑架构兼容性
- 完整验证驱动链:确保CUDA工具包、显卡驱动和PyTorch版本完全匹配
- 监控显存使用:使用nvidia-smi等工具实时监控各卡显存使用情况
总结
这一案例展示了在特定硬件环境下部署大型语言模型可能遇到的挑战。通过系统更换等方案,我们验证了环境兼容性对模型稳定运行的重要性。对于企业级部署,建议在硬件采购前充分验证目标模型的运行需求,并建立标准化的部署流程,以确保生产环境的稳定性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
515

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
380

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
334
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
603
58