Tidis 开源项目安装及使用指南
1、项目介绍
关于 Tidis
Tidis 是一款由 PingCAP 官方维护的新版本分布式存储服务层,专为 TiKV 设计,旨在提供兼容 Redis 协议的分布式存储服务。通过利用 PingCAP 的技术实力,Tidis 实现了包括 string、hash、list、set 和 sortedset 在内的多种数据类型支持,为用户提供高度可扩展且具有一致性的存储解决方案。
特征亮点:
- 多协议支持:除了 Redis 协议之外,未来可能支持更多协议。
- 线性扩展能力:能够随着业务增长进行水平扩展,满足大数据量需求。
- 存储与计算分离:允许独立扩展存储资源和计算资源,优化成本效率。
- 高可用与强一致性:确保在任何情况下都能保持数据的持久性和一致性,提高系统整体稳定性。
2、项目快速启动
为了让你快速上手 Tidis,我们提供以下步骤帮助你完成环境搭建。
准备工作
确保你的环境中已安装下列软件:
- Docker(用于拉取镜像)
- Tikv 集群(包括 PD 和 TiKV 服务器)
如果你尚未部署 Tikv 集群,可以参考 PingCAP 官方指导来设置 PD 和 TiKV。本节将重点介绍如何运行 Tidis。
拉取 Docker 镜像并运行
首先,从 Docker 官方镜像仓库上拉取最新的 Tidis 镜像:
docker pull yongman/tidis
接着,你可以选择两种方式之一运行 Tidis:
-
直接执行二进制文件:
./bin/tidis-server -conf config.toml其中
config.toml是你的配置文件路径。 -
使用 Docker 运行:
docker run -d --name=tidis \ -p 5379:5379 \ -v [your_config_dir]:/data \ yongman/tidis \ -conf="/data/config.toml"其中
[your_config_dir]需要替换为你存放配置文件的实际目录路径。
示例命令测试
现在,我们可以使用 redis-cli 来验证 Tidis 是否正常运行:
redis-cli -p 5379
127.0.0.1:5379> GET akey
如果一切配置正确,你应该能看到之前存储的数据或相应的错误消息提示。
3、应用案例和最佳实践
应用场景示例
假设我们需要在大型电商平台中实现高性能缓存以加速响应速度。由于平台的高并发特性以及频繁的读写操作要求,传统的单机缓存方案难以满足需求。此时,采用基于 Tidis 构建的分布式缓存系统便成为理想的选择。Tidis 的高并发能力和水平扩展性使其能够在面对大量请求时仍保持稳定性能,同时也具备数据持久化功能,保障数据安全。
最佳实践建议
当集成 Tidis 到现有架构时,以下几个点是值得考虑的最佳实践:
- 合理设计数据分区策略:通过对数据进行合理的分区,可以有效避免热点问题,保证访问均衡。
- 监控与报警机制:建立实时的监控体系和有效的故障报警流程,及时发现并处理潜在的问题。
- 定期健康检查:定期对集群进行全面的健康状态检查,包括但不限于节点状态、网络延迟等关键指标。
- 容灾备份计划:制定详尽的灾难恢复和数据备份策略,减少数据丢失风险。
4、典型生态项目
虽然目前文档中未具体列出 Tidis 的生态系统项目,但作为一个高度兼容 Redis 协议的分布式存储服务,Tidis 可以轻松地融入大多数使用 Redis 的应用场景,如缓存层、数据库前端等。未来,随着社区的发展,我们期待看到更多的实际应用案例和技术分享,共同推动 Tidis 生态的成长。
以上就是关于 Tidis 的简要介绍及其快速入门指南。我们鼓励所有感兴趣的开发者加入我们的社区,一起探索和构建更强大的分布式存储解决方案。如果你在使用过程中遇到任何疑问或困难,欢迎随时联系我们的技术支持团队获取帮助。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00