IREE 开源项目教程
1. 项目介绍
IREE(Intermediate Representation Execution Environment)是一个基于 MLIR 的端到端编译器和运行时,旨在将机器学习(ML)模型降低到统一的中间表示(IR),以满足数据中心的需求,并适应移动和边缘部署的约束和特殊考虑。IREE 支持多种机器学习框架,如 JAX、ONNX、PyTorch、TensorFlow 和 TensorFlow Lite,并能够在多种平台上运行,包括 Linux、Windows、macOS、Android、iOS 等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下工具:
- Git
- Python 3.x
- CMake
- Bazel
2.2 克隆项目
首先,克隆 IREE 项目到本地:
git clone https://github.com/openxla/iree.git
cd iree
2.3 构建项目
使用 Bazel 构建 IREE:
bazel build //iree/...
2.4 运行示例
构建完成后,可以运行一个简单的示例来验证安装是否成功:
bazel run //iree/samples:simple_embedding
3. 应用案例和最佳实践
3.1 在移动设备上部署模型
IREE 特别适合在移动和边缘设备上部署机器学习模型。通过 IREE 的优化编译,可以在资源受限的设备上高效运行模型。
3.2 在数据中心进行模型推理
在数据中心环境中,IREE 可以与现有的机器学习框架无缝集成,提供高效的模型推理服务。
3.3 跨平台模型部署
IREE 支持多种平台和硬件加速器,使得开发者可以轻松地将模型部署到不同的环境中,无需担心兼容性问题。
4. 典型生态项目
4.1 MLIR
MLIR(Multi-Level Intermediate Representation)是 IREE 的核心技术之一,它提供了一个灵活的中间表示层,支持多种硬件和软件的优化。
4.2 TensorFlow
TensorFlow 是 IREE 支持的主要机器学习框架之一,通过 IREE,TensorFlow 模型可以在多种平台上高效运行。
4.3 PyTorch
IREE 也支持 PyTorch 模型,开发者可以使用 IREE 将 PyTorch 模型编译为高效的中间表示,并在目标平台上运行。
4.4 ONNX
ONNX(Open Neural Network Exchange)是一个开放的神经网络交换格式,IREE 支持 ONNX 模型,使得开发者可以轻松地将 ONNX 模型部署到不同的环境中。
通过以上模块的介绍,您应该对 IREE 项目有了一个全面的了解,并能够快速上手使用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00