使用masci/banks项目实现Anthropic API的提示词缓存优化
2025-06-04 04:37:03作者:蔡丛锟
引言
在大语言模型应用中,提示词(prompt)设计是核心环节之一。当我们需要处理长文本内容时,如何高效管理和优化提示词成为提升性能和降低成本的关键。本文将介绍如何利用masci/banks项目实现Anthropic API的提示词缓存功能,显著提升大文本处理场景下的效率。
什么是提示词缓存?
提示词缓存是一种优化技术,它允许我们将提示词中的部分内容存储在服务端缓存中,避免重复传输和处理相同内容。这在处理长文本(如整本书籍)时特别有用,可以:
- 减少API调用时间
- 降低计算资源消耗
- 节省API调用成本
环境准备
首先需要安装banks库,这是masci/banks项目的核心组件:
!pip install banks
示例场景:分析《傲慢与偏见》
为了演示提示词缓存的优势,我们选择《傲慢与偏见》整本书作为示例文本。首先下载文本内容:
!curl -O https://www.gutenberg.org/cache/epub/1342/pg1342.txt
with open("pg1342.txt") as f:
book = f.read()
使用banks构建可缓存的提示词
banks库提供了简洁的模板语法来构建提示词,并支持通过cache_control过滤器指定缓存部分:
from banks import Prompt
tpl = """
{% chat role="user" %}
Analyze this book:
{# 只有这部分内容(包括书籍文本)会被缓存 #}
{{ book | cache_control("ephemeral") }}
{# 这部分不会被缓存 #}
What is the title of this book? Only output the title.
{% endchat %}
"""
p = Prompt(tpl)
chat_messages = p.chat_messages({"book": book})
messages_dict = [m.model_dump(exclude_none=True) for m in chat_messages]
关键点说明:
cache_control("ephemeral")标记该部分内容可被缓存- 模板语法清晰区分缓存和非缓存部分
- 最终生成符合Anthropic API要求的消息格式
性能对比测试
首次调用(无缓存)
import time
from litellm import completion
start_time = time.time()
response = completion(model="anthropic/claude-3-5-sonnet-20240620", messages=messages_dict)
print(f"非缓存API调用时间: {time.time() - start_time:.2f} 秒")
print(response.usage)
首次调用需要完整传输和处理书籍文本,耗时和资源消耗较高。
第二次调用(有缓存)
start_time = time.time()
response = completion(model="anthropic/claude-3-5-sonnet-20240620", messages=messages_dict)
print(f"缓存API调用时间: {time.time() - start_time:.2f} 秒")
print(response.usage)
第二次调用时,书籍内容已缓存,API只需处理新增的问题部分,性能显著提升。
技术原理深度解析
banks库的提示词缓存功能底层实现基于以下关键技术:
- 消息块分割:将提示词分割为可缓存和不可缓存部分
- 缓存标记注入:通过特殊标记告知API哪些部分可缓存
- 上下文管理:确保缓存的上下文与当前对话保持一致性
这种设计使得:
- 长文本只需传输和处理一次
- 后续交互只需关注新增内容
- 缓存策略可灵活配置(如设置过期时间)
最佳实践建议
- 识别可缓存内容:固定不变的长文本(如参考文档、背景资料)最适合缓存
- 合理分割提示词:将动态内容与静态内容分开
- 监控缓存效果:定期检查缓存命中率和性能提升
- 考虑缓存失效:当参考内容更新时需要清除相关缓存
结论
通过masci/banks项目实现的提示词缓存功能,开发者可以轻松优化大语言模型应用中的长文本处理场景。这种方法不仅提升了性能,还显著降低了API调用成本,是构建高效AI应用的实用技术。
对于需要频繁处理相同背景资料的AI应用(如文档分析、知识问答等),合理使用提示词缓存可以带来可观的效率提升和成本节约。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
195
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692