使用masci/banks项目实现Anthropic API的提示词缓存优化
2025-06-04 17:13:31作者:蔡丛锟
引言
在大语言模型应用中,提示词(prompt)设计是核心环节之一。当我们需要处理长文本内容时,如何高效管理和优化提示词成为提升性能和降低成本的关键。本文将介绍如何利用masci/banks项目实现Anthropic API的提示词缓存功能,显著提升大文本处理场景下的效率。
什么是提示词缓存?
提示词缓存是一种优化技术,它允许我们将提示词中的部分内容存储在服务端缓存中,避免重复传输和处理相同内容。这在处理长文本(如整本书籍)时特别有用,可以:
- 减少API调用时间
- 降低计算资源消耗
- 节省API调用成本
环境准备
首先需要安装banks库,这是masci/banks项目的核心组件:
!pip install banks
示例场景:分析《傲慢与偏见》
为了演示提示词缓存的优势,我们选择《傲慢与偏见》整本书作为示例文本。首先下载文本内容:
!curl -O https://www.gutenberg.org/cache/epub/1342/pg1342.txt
with open("pg1342.txt") as f:
book = f.read()
使用banks构建可缓存的提示词
banks库提供了简洁的模板语法来构建提示词,并支持通过cache_control过滤器指定缓存部分:
from banks import Prompt
tpl = """
{% chat role="user" %}
Analyze this book:
{# 只有这部分内容(包括书籍文本)会被缓存 #}
{{ book | cache_control("ephemeral") }}
{# 这部分不会被缓存 #}
What is the title of this book? Only output the title.
{% endchat %}
"""
p = Prompt(tpl)
chat_messages = p.chat_messages({"book": book})
messages_dict = [m.model_dump(exclude_none=True) for m in chat_messages]
关键点说明:
cache_control("ephemeral")标记该部分内容可被缓存- 模板语法清晰区分缓存和非缓存部分
- 最终生成符合Anthropic API要求的消息格式
性能对比测试
首次调用(无缓存)
import time
from litellm import completion
start_time = time.time()
response = completion(model="anthropic/claude-3-5-sonnet-20240620", messages=messages_dict)
print(f"非缓存API调用时间: {time.time() - start_time:.2f} 秒")
print(response.usage)
首次调用需要完整传输和处理书籍文本,耗时和资源消耗较高。
第二次调用(有缓存)
start_time = time.time()
response = completion(model="anthropic/claude-3-5-sonnet-20240620", messages=messages_dict)
print(f"缓存API调用时间: {time.time() - start_time:.2f} 秒")
print(response.usage)
第二次调用时,书籍内容已缓存,API只需处理新增的问题部分,性能显著提升。
技术原理深度解析
banks库的提示词缓存功能底层实现基于以下关键技术:
- 消息块分割:将提示词分割为可缓存和不可缓存部分
- 缓存标记注入:通过特殊标记告知API哪些部分可缓存
- 上下文管理:确保缓存的上下文与当前对话保持一致性
这种设计使得:
- 长文本只需传输和处理一次
- 后续交互只需关注新增内容
- 缓存策略可灵活配置(如设置过期时间)
最佳实践建议
- 识别可缓存内容:固定不变的长文本(如参考文档、背景资料)最适合缓存
- 合理分割提示词:将动态内容与静态内容分开
- 监控缓存效果:定期检查缓存命中率和性能提升
- 考虑缓存失效:当参考内容更新时需要清除相关缓存
结论
通过masci/banks项目实现的提示词缓存功能,开发者可以轻松优化大语言模型应用中的长文本处理场景。这种方法不仅提升了性能,还显著降低了API调用成本,是构建高效AI应用的实用技术。
对于需要频繁处理相同背景资料的AI应用(如文档分析、知识问答等),合理使用提示词缓存可以带来可观的效率提升和成本节约。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134