Botorch中输入变换在似然函数调用中的不一致性问题分析
2025-06-25 13:23:06作者:邓越浪Henry
问题背景
在机器学习模型开发过程中,输入数据的标准化和归一化是常见的预处理步骤。Botorch作为基于PyTorch的贝叶斯优化库,提供了input_transform功能来自动处理输入数据的变换。然而,近期在使用异方差噪声模型时发现了一个潜在的问题:当模型包含输入变换时,训练模式和评估模式下传递给似然函数的输入空间不一致。
问题现象
具体表现为:
- 在训练模式下,似然函数接收的是原始输入空间的数据
- 在评估模式下,似然函数接收的是经过变换后的输入空间数据
这种不一致性可能导致模型在不同模式下表现不一致,特别是对于依赖输入位置的噪声模型(如异方差噪声模型)会产生显著影响。
技术分析
通过分析Botorch的源代码,发现问题根源在于模型闭包(model_closures.py)中的输入变换处理逻辑。在训练过程中,优化闭包没有正确应用输入变换,导致传递给似然函数的数据保持原始空间;而在评估模式下,输入变换被正确应用。
这种不一致性违反了深度学习模型的一个基本原则:训练和推理阶段的数据处理流程应当保持一致。输入变换作为模型的一部分,应当在所有阶段统一应用。
解决方案
Botorch团队已经通过提交修复了这个问题。修复的核心思想是确保在训练闭包中也正确应用输入变换,使得无论在训练还是评估模式下,传递给似然函数的数据都位于相同的变换后空间。
对于开发者而言,如果遇到类似问题,可以:
- 检查模型在不同模式下的输入处理流程
- 确保所有预处理步骤(包括输入变换)在训练和评估模式下保持一致
- 对于自定义的似然函数或模型,显式检查输入数据的空间一致性
最佳实践建议
- 当使用输入变换时,建议在模型开发初期就验证训练和评估模式下的行为一致性
- 对于噪声模型等对输入位置敏感的组件,应当特别注意输入空间的一致性
- 可以通过添加调试代码(如示例中的WrapperLikelihood)来监控实际接收到的输入数据
- 保持Botorch和相关依赖库(如GPyTorch)的版本更新,以获取最新的修复和改进
这个问题提醒我们,在构建复杂的概率模型时,需要特别注意各组件间的数据流一致性,特别是在涉及数据变换的情况下。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C047
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
438
3.33 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
816
384
Ascend Extension for PyTorch
Python
246
284
暂无简介
Dart
701
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
276
126
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871