Loco-RS项目中JWT Claims序列化问题的分析与改进
2025-05-29 14:03:07作者:庞眉杨Will
背景介绍
在基于Rust的Web框架Loco-RS中,JWT(JSON Web Token)的实现是认证系统的核心组件之一。JWT标准定义了一种紧凑且自包含的方式,用于在各方之间安全地传输信息作为JSON对象。这些信息可以被验证和信任,因为它们是数字签名的。
问题发现
在Loco-RS的当前实现中,开发者发现JWT的claims(声明)序列化方式存在一个设计问题。当开发者尝试添加自定义claims时,这些claims会被嵌套在一个名为"claims"的字段中,而不是直接与标准claims(如"pid"和"exp")平级。
例如,当开发者想要添加一个包含用户角色的claims时,期望的JWT payload结构应该是:
{
"pid": "PID",
"exp": 1736099338,
"roles": ["admin", "non-admin"]
}
但实际得到的却是:
{
"pid": "PID",
"exp": 1736099338,
"claims": {
"roles": ["admin", "non-admin"]
}
}
技术分析
这个问题源于Loco-RS中UserClaims结构体的定义方式:
#[derive(Debug, Serialize, Deserialize)]
pub struct UserClaims {
pub pid: String,
exp: u64,
pub claims: Option<Value>,
}
这里的claims字段被定义为一个可选的serde_json::Value类型,导致在序列化时,所有自定义claims都会被包装在这个字段下。
解决方案探讨
方案一:使用#[serde(flatten)]属性
最初的建议是使用Serde的flatten属性:
#[derive(Debug, Serialize, Deserialize)]
pub struct UserClaims {
pub pid: String,
exp: u64,
#[serde(flatten)]
pub claims: Option<Value>,
}
这个方案虽然简单,但存在潜在问题:当Value不是对象类型(如整数、字符串等)时,会导致运行时错误。
方案二:使用HashMap替代Value
更健壮的解决方案是使用HashMap<String, Value>:
#[derive(Debug, Serialize, Deserialize)]
pub struct UserClaims {
pub pid: String,
exp: u64,
#[serde(default, flatten)]
pub claims: HashMap<String,Value>,
}
这个方案的优势在于:
- 强制要求claims必须是键值对形式,符合JWT规范
- 使用
default属性确保即使没有提供claims也能正常工作 - 类型安全,避免了非对象类型的Value导致的错误
实现考量
采用第二种方案需要考虑以下因素:
- 向后兼容性:这是一个破坏性变更,需要更新所有使用此功能的代码
- 错误处理:需要明确处理claims转换失败的情况
- 性能影响:HashMap的使用可能会带来轻微的性能开销,但在大多数场景下可以忽略
最佳实践建议
在实际开发中,建议:
- 为自定义claims定义明确的类型,而不是直接使用Value
- 在转换时进行严格的类型检查
- 考虑添加claims验证机制,确保它们符合应用需求
结论
通过将UserClaims结构体中的claims字段改为使用HashMap<String, Value>并结合#[serde(flatten)]属性,可以更优雅地实现JWT claims的序列化,使其符合标准实践并提高类型安全性。这一改进将使Loco-RS的JWT实现更加符合开发者预期,同时保持灵活性和健壮性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134