Loco-RS项目中JWT Claims序列化问题的分析与改进
2025-05-29 19:44:12作者:庞眉杨Will
背景介绍
在基于Rust的Web框架Loco-RS中,JWT(JSON Web Token)的实现是认证系统的核心组件之一。JWT标准定义了一种紧凑且自包含的方式,用于在各方之间安全地传输信息作为JSON对象。这些信息可以被验证和信任,因为它们是数字签名的。
问题发现
在Loco-RS的当前实现中,开发者发现JWT的claims(声明)序列化方式存在一个设计问题。当开发者尝试添加自定义claims时,这些claims会被嵌套在一个名为"claims"的字段中,而不是直接与标准claims(如"pid"和"exp")平级。
例如,当开发者想要添加一个包含用户角色的claims时,期望的JWT payload结构应该是:
{
"pid": "PID",
"exp": 1736099338,
"roles": ["admin", "non-admin"]
}
但实际得到的却是:
{
"pid": "PID",
"exp": 1736099338,
"claims": {
"roles": ["admin", "non-admin"]
}
}
技术分析
这个问题源于Loco-RS中UserClaims
结构体的定义方式:
#[derive(Debug, Serialize, Deserialize)]
pub struct UserClaims {
pub pid: String,
exp: u64,
pub claims: Option<Value>,
}
这里的claims
字段被定义为一个可选的serde_json::Value
类型,导致在序列化时,所有自定义claims都会被包装在这个字段下。
解决方案探讨
方案一:使用#[serde(flatten)]
属性
最初的建议是使用Serde的flatten
属性:
#[derive(Debug, Serialize, Deserialize)]
pub struct UserClaims {
pub pid: String,
exp: u64,
#[serde(flatten)]
pub claims: Option<Value>,
}
这个方案虽然简单,但存在潜在问题:当Value
不是对象类型(如整数、字符串等)时,会导致运行时错误。
方案二:使用HashMap替代Value
更健壮的解决方案是使用HashMap<String, Value>
:
#[derive(Debug, Serialize, Deserialize)]
pub struct UserClaims {
pub pid: String,
exp: u64,
#[serde(default, flatten)]
pub claims: HashMap<String,Value>,
}
这个方案的优势在于:
- 强制要求claims必须是键值对形式,符合JWT规范
- 使用
default
属性确保即使没有提供claims也能正常工作 - 类型安全,避免了非对象类型的Value导致的错误
实现考量
采用第二种方案需要考虑以下因素:
- 向后兼容性:这是一个破坏性变更,需要更新所有使用此功能的代码
- 错误处理:需要明确处理claims转换失败的情况
- 性能影响:HashMap的使用可能会带来轻微的性能开销,但在大多数场景下可以忽略
最佳实践建议
在实际开发中,建议:
- 为自定义claims定义明确的类型,而不是直接使用Value
- 在转换时进行严格的类型检查
- 考虑添加claims验证机制,确保它们符合应用需求
结论
通过将UserClaims
结构体中的claims字段改为使用HashMap<String, Value>
并结合#[serde(flatten)]
属性,可以更优雅地实现JWT claims的序列化,使其符合标准实践并提高类型安全性。这一改进将使Loco-RS的JWT实现更加符合开发者预期,同时保持灵活性和健壮性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133