Loco-RS项目中JWT Claims序列化问题的分析与改进
2025-05-29 04:28:24作者:庞眉杨Will
背景介绍
在基于Rust的Web框架Loco-RS中,JWT(JSON Web Token)的实现是认证系统的核心组件之一。JWT标准定义了一种紧凑且自包含的方式,用于在各方之间安全地传输信息作为JSON对象。这些信息可以被验证和信任,因为它们是数字签名的。
问题发现
在Loco-RS的当前实现中,开发者发现JWT的claims(声明)序列化方式存在一个设计问题。当开发者尝试添加自定义claims时,这些claims会被嵌套在一个名为"claims"的字段中,而不是直接与标准claims(如"pid"和"exp")平级。
例如,当开发者想要添加一个包含用户角色的claims时,期望的JWT payload结构应该是:
{
"pid": "PID",
"exp": 1736099338,
"roles": ["admin", "non-admin"]
}
但实际得到的却是:
{
"pid": "PID",
"exp": 1736099338,
"claims": {
"roles": ["admin", "non-admin"]
}
}
技术分析
这个问题源于Loco-RS中UserClaims结构体的定义方式:
#[derive(Debug, Serialize, Deserialize)]
pub struct UserClaims {
pub pid: String,
exp: u64,
pub claims: Option<Value>,
}
这里的claims字段被定义为一个可选的serde_json::Value类型,导致在序列化时,所有自定义claims都会被包装在这个字段下。
解决方案探讨
方案一:使用#[serde(flatten)]属性
最初的建议是使用Serde的flatten属性:
#[derive(Debug, Serialize, Deserialize)]
pub struct UserClaims {
pub pid: String,
exp: u64,
#[serde(flatten)]
pub claims: Option<Value>,
}
这个方案虽然简单,但存在潜在问题:当Value不是对象类型(如整数、字符串等)时,会导致运行时错误。
方案二:使用HashMap替代Value
更健壮的解决方案是使用HashMap<String, Value>:
#[derive(Debug, Serialize, Deserialize)]
pub struct UserClaims {
pub pid: String,
exp: u64,
#[serde(default, flatten)]
pub claims: HashMap<String,Value>,
}
这个方案的优势在于:
- 强制要求claims必须是键值对形式,符合JWT规范
- 使用
default属性确保即使没有提供claims也能正常工作 - 类型安全,避免了非对象类型的Value导致的错误
实现考量
采用第二种方案需要考虑以下因素:
- 向后兼容性:这是一个破坏性变更,需要更新所有使用此功能的代码
- 错误处理:需要明确处理claims转换失败的情况
- 性能影响:HashMap的使用可能会带来轻微的性能开销,但在大多数场景下可以忽略
最佳实践建议
在实际开发中,建议:
- 为自定义claims定义明确的类型,而不是直接使用Value
- 在转换时进行严格的类型检查
- 考虑添加claims验证机制,确保它们符合应用需求
结论
通过将UserClaims结构体中的claims字段改为使用HashMap<String, Value>并结合#[serde(flatten)]属性,可以更优雅地实现JWT claims的序列化,使其符合标准实践并提高类型安全性。这一改进将使Loco-RS的JWT实现更加符合开发者预期,同时保持灵活性和健壮性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443