SUMO仿真中出租车最小预期数量计算方法的优化分析
2025-06-29 22:32:26作者:冯爽妲Honey
背景介绍
SUMO(Simulation of Urban MObility)是一款开源的微观交通仿真软件,广泛应用于城市交通规划、智能交通系统研究等领域。在SUMO的出租车调度系统中,simulation.getMinExpectedNumber是一个重要的TraCI接口函数,用于计算完成当前所有出租车预约请求所需的最小车辆数。
问题发现
在SUMO的出租车调度逻辑中,原有的simulation.getMinExpectedNumber函数实现存在一个明显的局限性:它仅考虑了当前正在进行的出租车行程(reservations),而没有将处于等待状态的预约请求(pending reservations)纳入计算范围。这可能导致系统低估实际需要的出租车数量,从而影响调度决策的准确性。
技术分析
出租车调度系统通常包含两种状态:
- 进行中的行程(Active Reservations):出租车已经分配并正在执行的任务
- 待处理的预约(Pending Reservations):尚未分配出租车的请求
原有的实现仅基于第一种状态计算最小所需车辆数,这在以下场景中会产生问题:
- 高峰时段大量预约请求涌入时
- 出租车资源紧张的情况下
- 需要进行长期调度规划时
解决方案
针对这一问题,开发团队对simulation.getMinExpectedNumber函数进行了优化改进:
- 数据结构扩展:在计算过程中同时遍历active和pending两种状态的预约请求
- 时间窗口整合:将所有预约请求(无论状态)按照时间窗口进行统一处理
- 冲突检测算法:优化原有的冲突检测逻辑,确保不同状态的请求不会产生资源分配冲突
核心算法改进包括:
def getMinExpectedNumber():
# 合并active和pending两种状态的请求
all_reservations = active_reservations + pending_reservations
# 按照时间窗口排序
sorted_reservations = sort_by_time(all_reservations)
# 计算最小车辆数
min_vehicles = calculate_min_vehicles(sorted_reservations)
return min_vehicles
影响评估
这一改进带来了多方面的积极影响:
- 调度准确性提升:系统能更准确地预估实际需要的出租车数量
- 资源利用率优化:避免因低估需求导致的车辆不足情况
- 用户体验改善:减少因车辆不足导致的预约失败或长时间等待
实际应用建议
对于SUMO用户和开发者,在使用出租车调度功能时应注意:
- 升级到包含此修复的版本(如v1.18.0及以上)
- 在仿真配置中合理设置出租车数量和调度参数
- 监控调度系统的性能指标,特别是预约成功率
总结
SUMO项目团队对出租车最小预期数量计算方法的这一优化,体现了对系统细节的持续改进精神。通过将pending状态的预约请求纳入计算范围,显著提升了出租车调度系统的准确性和可靠性,为城市交通仿真研究提供了更加强大的工具支持。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178