TensorFlow Lite Micro在SparkFun Edge开发板上的应用实践
2025-07-03 06:02:43作者:魏侃纯Zoe
背景介绍
TensorFlow Lite Micro(TFLM)是TensorFlow针对微控制器和嵌入式设备的轻量级机器学习框架。SparkFun Edge是一款基于Ambiq Apollo3 Blue的低功耗开发板,非常适合运行TFLM模型。本文将详细介绍如何在SparkFun Edge开发板上部署TFLM示例应用。
开发环境准备
要在SparkFun Edge上运行TFLM,首先需要搭建开发环境。这包括:
- 安装必要的工具链(如GCC ARM嵌入式工具链)
- 获取TFLM源代码
- 准备SparkFun Edge开发板及其调试工具
构建TFLM示例应用
使用TFLM为SparkFun Edge构建示例应用时,可以通过以下命令完成编译:
make examples
这个命令会编译所有可用的示例应用,包括语音识别(micro_speech)和Hello World等基础示例。编译完成后,生成的二进制文件会存放在项目的gen/bin目录下。
二进制文件格式说明
在构建过程中,TFLM会生成多种中间文件。值得注意的是:
- .d文件:这些是依赖文件(dependency files),记录了源代码文件之间的依赖关系
- 实际可执行文件通常以.bin为扩展名
如果发现目录中只有.d文件而没有.bin文件,可能是构建过程没有完全成功,需要检查构建日志中的错误信息。
部署到开发板
将编译好的二进制文件烧录到SparkFun Edge开发板通常需要:
- 使用专用的编程工具(如Ambiq的Apollo3编程工具)
- 通过SWD接口连接开发板
- 擦除开发板原有程序
- 写入新编译的二进制文件
注意事项
- SparkFun Edge并非TFLM官方支持的平台,可能会遇到一些兼容性问题
- 不同版本的TFLM可能对构建命令有所调整
- 确保开发板的bootloader版本与工具链兼容
- 低功耗设备上的性能限制需要考虑模型复杂度
调试技巧
在部署过程中如果遇到问题,可以尝试:
- 检查串口输出日志
- 使用调试器单步执行
- 简化模型进行测试
- 验证内存分配是否足够
总结
在SparkFun Edge这类资源受限的设备上运行TFLM模型,需要特别注意内存使用和性能优化。通过合理配置构建系统和正确部署二进制文件,可以在这些低功耗设备上实现有趣的机器学习应用。随着TFLM的持续发展,对更多嵌入式平台的支持也在不断完善中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19