Chinese-LLaMA-Alpaca-2模型词表扩充中的初始化策略分析
在大型语言模型的训练和应用过程中,词表扩充是一个常见的技术需求。当我们需要为Chinese-LLaMA-Alpaca-2这类基于LLaMA架构的中文优化模型添加新的词汇时,如何初始化这些新增token的embedding层和lm_head层参数是一个值得深入探讨的技术问题。
词表扩充的基本概念
词表扩充是指在原有预训练模型的词汇表基础上增加新的token。这一过程通常发生在以下几种场景:
- 需要支持特定领域的专业术语
- 希望更好地处理某些高频但未包含在原始词表中的词汇
- 针对特定语言进行优化(如中文)时添加更多相关字符或词语
新增token的初始化方法
在Chinese-LLaMA-Alpaca-2项目中,当进行词表扩充后,对新添加token的初始化主要考虑以下几种方式:
-
均值初始化:这是项目推荐的方法,将新增token的embedding向量初始化为现有词表中所有token embedding的均值。这种方法利用了模型已有知识的"平均水平",使新token在初始阶段具有相对中性的表示。
-
随机初始化:完全随机地为新token分配初始向量。这种方法虽然简单,但可能导致新token在初始阶段与已有token的语义关系不明确。
-
带噪均值初始化:在均值初始化的基础上加入少量随机噪声。这种方法试图在保持整体语义中立的同时,为不同新token引入一定的差异性。
初始化策略的选择考量
Chinese-LLaMA-Alpaca-2项目团队经过实践验证,推荐使用均值初始化方法,主要基于以下技术考量:
-
训练稳定性:均值初始化能保持模型参数的总体分布,避免因随机初始化带来的训练初期不稳定。
-
知识迁移:通过利用已有token的统计信息,新token能够更快地融入模型的语义空间。
-
收敛速度:相比完全随机初始化,均值初始化通常能使模型更快收敛。
实践建议
对于需要在Chinese-LLaMA-Alpaca-2基础上进行词表扩展的研究者和开发者,建议:
-
优先考虑均值初始化方法,特别是在扩充规模不大时。
-
对于大规模词表扩充(如增加数千个token),可以考虑结合均值初始化和带噪初始化,为不同类别的新token采用不同的初始化策略。
-
扩充后建议进行适当微调,使新token能够更好地融入模型的语义空间。
词表扩充和初始化策略的选择需要结合实际应用场景和扩充规模进行权衡,均值初始化因其稳定性和有效性,成为Chinese-LLaMA-Alpaca-2项目的推荐做法。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0289- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









