Chinese-LLaMA-Alpaca-2模型词表扩充中的初始化策略分析
在大型语言模型的训练和应用过程中,词表扩充是一个常见的技术需求。当我们需要为Chinese-LLaMA-Alpaca-2这类基于LLaMA架构的中文优化模型添加新的词汇时,如何初始化这些新增token的embedding层和lm_head层参数是一个值得深入探讨的技术问题。
词表扩充的基本概念
词表扩充是指在原有预训练模型的词汇表基础上增加新的token。这一过程通常发生在以下几种场景:
- 需要支持特定领域的专业术语
- 希望更好地处理某些高频但未包含在原始词表中的词汇
- 针对特定语言进行优化(如中文)时添加更多相关字符或词语
新增token的初始化方法
在Chinese-LLaMA-Alpaca-2项目中,当进行词表扩充后,对新添加token的初始化主要考虑以下几种方式:
-
均值初始化:这是项目推荐的方法,将新增token的embedding向量初始化为现有词表中所有token embedding的均值。这种方法利用了模型已有知识的"平均水平",使新token在初始阶段具有相对中性的表示。
-
随机初始化:完全随机地为新token分配初始向量。这种方法虽然简单,但可能导致新token在初始阶段与已有token的语义关系不明确。
-
带噪均值初始化:在均值初始化的基础上加入少量随机噪声。这种方法试图在保持整体语义中立的同时,为不同新token引入一定的差异性。
初始化策略的选择考量
Chinese-LLaMA-Alpaca-2项目团队经过实践验证,推荐使用均值初始化方法,主要基于以下技术考量:
-
训练稳定性:均值初始化能保持模型参数的总体分布,避免因随机初始化带来的训练初期不稳定。
-
知识迁移:通过利用已有token的统计信息,新token能够更快地融入模型的语义空间。
-
收敛速度:相比完全随机初始化,均值初始化通常能使模型更快收敛。
实践建议
对于需要在Chinese-LLaMA-Alpaca-2基础上进行词表扩展的研究者和开发者,建议:
-
优先考虑均值初始化方法,特别是在扩充规模不大时。
-
对于大规模词表扩充(如增加数千个token),可以考虑结合均值初始化和带噪初始化,为不同类别的新token采用不同的初始化策略。
-
扩充后建议进行适当微调,使新token能够更好地融入模型的语义空间。
词表扩充和初始化策略的选择需要结合实际应用场景和扩充规模进行权衡,均值初始化因其稳定性和有效性,成为Chinese-LLaMA-Alpaca-2项目的推荐做法。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00