Chinese-LLaMA-Alpaca-2模型词表扩充中的初始化策略分析
在大型语言模型的训练和应用过程中,词表扩充是一个常见的技术需求。当我们需要为Chinese-LLaMA-Alpaca-2这类基于LLaMA架构的中文优化模型添加新的词汇时,如何初始化这些新增token的embedding层和lm_head层参数是一个值得深入探讨的技术问题。
词表扩充的基本概念
词表扩充是指在原有预训练模型的词汇表基础上增加新的token。这一过程通常发生在以下几种场景:
- 需要支持特定领域的专业术语
- 希望更好地处理某些高频但未包含在原始词表中的词汇
- 针对特定语言进行优化(如中文)时添加更多相关字符或词语
新增token的初始化方法
在Chinese-LLaMA-Alpaca-2项目中,当进行词表扩充后,对新添加token的初始化主要考虑以下几种方式:
-
均值初始化:这是项目推荐的方法,将新增token的embedding向量初始化为现有词表中所有token embedding的均值。这种方法利用了模型已有知识的"平均水平",使新token在初始阶段具有相对中性的表示。
-
随机初始化:完全随机地为新token分配初始向量。这种方法虽然简单,但可能导致新token在初始阶段与已有token的语义关系不明确。
-
带噪均值初始化:在均值初始化的基础上加入少量随机噪声。这种方法试图在保持整体语义中立的同时,为不同新token引入一定的差异性。
初始化策略的选择考量
Chinese-LLaMA-Alpaca-2项目团队经过实践验证,推荐使用均值初始化方法,主要基于以下技术考量:
-
训练稳定性:均值初始化能保持模型参数的总体分布,避免因随机初始化带来的训练初期不稳定。
-
知识迁移:通过利用已有token的统计信息,新token能够更快地融入模型的语义空间。
-
收敛速度:相比完全随机初始化,均值初始化通常能使模型更快收敛。
实践建议
对于需要在Chinese-LLaMA-Alpaca-2基础上进行词表扩展的研究者和开发者,建议:
-
优先考虑均值初始化方法,特别是在扩充规模不大时。
-
对于大规模词表扩充(如增加数千个token),可以考虑结合均值初始化和带噪初始化,为不同类别的新token采用不同的初始化策略。
-
扩充后建议进行适当微调,使新token能够更好地融入模型的语义空间。
词表扩充和初始化策略的选择需要结合实际应用场景和扩充规模进行权衡,均值初始化因其稳定性和有效性,成为Chinese-LLaMA-Alpaca-2项目的推荐做法。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00