StarRailCopilot项目中的网页截图性能优化实践
2025-06-19 07:02:29作者:魏献源Searcher
背景与问题分析
在网页自动化测试和游戏辅助工具开发中,快速获取网页截图是一个常见但关键的需求。StarRailCopilot项目最初使用Chrome调试协议进行网页截图,但发现每次截图耗时高达100多毫秒,这在需要频繁截图的场景下会成为性能瓶颈。
优化思路
借鉴了ADB和DroidCast等工具在移动设备上的优化经验,我们决定在浏览器端直接处理图像数据,避免传统截图方法中的多次数据转换和传输延迟。核心思想是"用带宽换速度",即在本地设备上直接处理图像数据流。
技术实现方案
浏览器端JavaScript实现
在浏览器端,我们通过JavaScript直接操作视频元素和Canvas来实现高效截图:
function scr() {
const video = document.querySelector(".game-player__video");
const canvas = document.createElement("canvas");
canvas.width = video.videoWidth | video.width;
canvas.height = video.videoHeight | video.height;
const ctx = canvas.getContext("2d");
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
let imageArray = ctx.getImageData(0, 0, canvas.width, canvas.height).data;
let blob = new Blob([imageArray], {type: "application/octet-stream"});
let formData = new FormData();
formData.append("width", canvas.width);
formData.append("height", canvas.height);
formData.append("image", blob);
fetch("http://127.0.0.1:5000/upload", {
method: "POST",
body: formData
});
}
这段代码实现了:
- 获取视频元素并创建临时Canvas
- 将视频帧绘制到Canvas上
- 提取原始图像数据并打包为二进制流
- 通过HTTP POST发送到本地服务
服务端Python实现
服务端使用Python的HTTP服务器接收并处理图像数据:
class PostJsServer(HTTPServer):
def __init__(self, host='127.0.0.1', port=5000):
self.log_message('PostJsServer start')
super().__init__((host, port), RequestHandler)
self.image = None
def serve(self, poll_interval=0.01):
# 实现了一个可中断的HTTP服务
# 仅在有请求时处理,处理完成后立即返回
...
关键优化点包括:
- 自定义表单解析器,比通用库更高效
- 实现了可中断的HTTP服务,只在需要时运行
- 使用生成器模式控制服务流程
- 直接处理二进制图像数据,减少转换步骤
性能对比
相比传统Chrome调试协议截图方法:
- 减少了数据转换次数
- 避免了不必要的协议开销
- 本地传输带宽利用率更高
- 服务按需启动,资源占用更低
应用场景
这种优化方案特别适合以下场景:
- 需要高频截图的自动化测试
- 实时游戏画面分析
- 对延迟敏感的视觉处理应用
- 资源受限的本地开发环境
总结
通过将图像处理逻辑前移到浏览器端,并优化数据传输流程,StarRailCopilot项目成功将网页截图性能提升了一个数量级。这种"本地优先"的设计思路不仅适用于截图场景,也可以推广到其他需要高效数据交换的Web自动化场景中。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492