KRR项目优化Prometheus查询性能的实践指南
2025-06-19 10:58:08作者:幸俭卉
背景介绍
KRR作为一款Kubernetes资源推荐工具,在大型集群环境中运行时可能会对Prometheus造成较大压力。特别是在处理包含大量Pod的命名空间时,传统的批量查询方式容易导致Prometheus服务崩溃。
问题现象
当集群中存在大量Pod(如1000个以上)时,KRR执行资源推荐时会发送包含所有Pod名称的正则表达式查询。这种全量查询方式会给Prometheus带来巨大压力,可能导致服务崩溃。错误日志中会显示类似"Failed to run query"的提示,查询语句中包含大量Pod名称的正则匹配条件。
解决方案
1. 使用--max-workers参数
KRR提供了--max-workers参数来限制并发查询数量,有效减轻Prometheus负载。通过设置较小的并发数(如2),可以显著降低查询压力:
krr simple --max-workers 2 -p http://127.0.0.1:9090/prometheus
这个参数控制了同时发送给Prometheus的查询请求数量,避免短时间内发送大量请求导致服务过载。
2. 查询间隔优化
在代码层面,可以通过在每次查询后添加适当的休眠时间来降低查询频率。例如在base.py中添加:
try:
response = self.prometheus.safe_custom_query(query=data.query)
time.sleep(10) # 添加10秒间隔
except Exception as e:
raise ValueError(f"Failed to run query: {data.query}") from e
这种方法虽然简单,但能有效缓解Prometheus压力,适合在临时解决方案中使用。
技术原理
Prometheus在处理包含大量时间序列的正则表达式查询时,会消耗大量内存和CPU资源。KRR默认会并发执行多个这样的查询,当并发量超过Prometheus处理能力时,就会导致服务崩溃。
通过限制并发查询数量(--max-workers)或增加查询间隔,可以:
- 降低Prometheus瞬时负载
- 避免内存溢出
- 提高查询成功率
- 保证系统稳定性
最佳实践建议
- 对于大型集群,始终使用
--max-workers参数,初始值建议设为2-5 - 监控Prometheus资源使用情况,根据实际情况调整并发数
- 考虑将大型命名空间的Pod分批处理
- 定期检查KRR日志,关注查询失败情况
总结
通过合理配置KRR的查询参数,可以有效解决在大型Kubernetes集群中运行时对Prometheus造成的压力问题。--max-workers参数提供了一种简单有效的方式来控制查询并发量,是处理这类问题的首选方案。对于特别大型的集群,还可以考虑结合查询间隔优化等辅助手段,确保系统稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218