【亲测免费】 Stable Diffusion TensorFlow 项目教程
2026-01-23 04:17:09作者:温艾琴Wonderful
1. 项目介绍
Stable Diffusion TensorFlow 是一个基于 Keras 和 TensorFlow 实现的 Stable Diffusion 模型。该项目的主要目的是将 Stable Diffusion 模型从 PyTorch 移植到 TensorFlow/Keras 框架中,使得用户可以在 TensorFlow 环境中使用 Stable Diffusion 进行图像生成、图像到图像转换、图像修复等任务。
该项目的主要特点包括:
- 支持 GPU 和 TPU 加速。
- 提供了 Colab 笔记本,方便用户快速上手。
- 支持从 PyTorch 的预训练权重进行迁移。
- 提供了 Python 接口,方便集成到现有项目中。
2. 项目快速启动
安装
你可以通过以下几种方式安装 Stable Diffusion TensorFlow:
使用 pip 安装
pip install git+https://github.com/divamgupta/stable-diffusion-tensorflow.git
从源码安装
git clone https://github.com/divamgupta/stable-diffusion-tensorflow.git
cd stable-diffusion-tensorflow
pip install -r requirements.txt
使用示例
文本生成图像
from stable_diffusion_tf.stable_diffusion import StableDiffusion
from PIL import Image
generator = StableDiffusion(
img_height=512,
img_width=512,
jit_compile=False,
)
img = generator.generate(
"An astronaut riding a horse",
num_steps=50,
unconditional_guidance_scale=7.5,
temperature=1,
batch_size=1,
)
Image.fromarray(img[0]).save("output.png")
图像到图像转换
img = generator.generate(
"A Halloween bedroom",
num_steps=50,
unconditional_guidance_scale=7.5,
temperature=1,
batch_size=1,
input_image="/path/to/img.png",
)
Image.fromarray(img[0]).save("output.png")
3. 应用案例和最佳实践
应用案例
- 图像生成:使用文本描述生成高质量的图像。例如,生成“一只骑着马的宇航员”的图像。
- 图像到图像转换:将输入图像转换为另一种风格的图像。例如,将一张普通的卧室照片转换为万圣节风格的卧室。
- 图像修复:修复损坏或不完整的图像。例如,修复一张有划痕的老照片。
最佳实践
- 使用 Colab 笔记本:项目提供了多个 Colab 笔记本,适合初学者快速上手。
- 调整参数:根据具体需求调整
num_steps、unconditional_guidance_scale等参数,以获得最佳的生成效果。 - 使用 GPU/TPU:在 Colab 中选择 GPU 或 TPU 加速,可以显著提高生成速度。
4. 典型生态项目
- Stable Diffusion PyTorch:原始的 Stable Diffusion 实现,基于 PyTorch 框架。
- Tinygrad:一个轻量级的深度学习框架,支持 Stable Diffusion 模型的运行。
- CompVis/stable-diffusion:Stable Diffusion 的官方实现,提供了丰富的文档和示例。
通过这些生态项目,用户可以更深入地了解 Stable Diffusion 的工作原理,并将其应用到更多的实际场景中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882