Tiptap与NextJS 14 Server Actions的JSON序列化兼容性问题解析
问题背景
在使用Tiptap富文本编辑器与NextJS 14的Server Actions功能集成时,开发者遇到了一个常见的JSON序列化问题。当尝试将包含heading节点的编辑器内容通过Server Actions传递到后端时,系统抛出错误:"Only plain objects, and a few built-ins, can be passed to Server Actions. Classes or null prototypes are not supported"。
技术原理分析
这个问题的本质在于NextJS 14的Server Actions对传输数据的严格限制。Server Actions要求传递的数据必须是纯JavaScript对象(plain objects),不能包含类实例或具有null原型的对象。
Tiptap编辑器底层使用ProseMirror作为核心引擎,当直接使用editor.state获取状态时,返回的是ProseMirror的文档状态对象,这个对象包含了一些特殊的类实例和原型方法,无法被NextJS的Server Actions直接序列化。
解决方案对比
推荐方案:使用getJSON方法
Tiptap专门提供了editor.getJSON()方法来获取纯JSON格式的编辑器内容。这个方法会返回一个完全符合JSON标准的对象结构,可以被NextJS Server Actions正确处理。
const content = editor.getJSON();
// 这个content可以直接传递给Server Actions
替代方案:手动序列化
如果由于某些原因必须使用editor.state,可以采用手动序列化的方式:
const content = JSON.parse(JSON.stringify(editor.state));
// 双重转换确保获得纯JSON对象
不过这种方法效率较低,且不是官方推荐的做法。
最佳实践建议
- 始终优先使用getJSON:这是Tiptap专门为获取可序列化内容设计的方法
- 避免直接使用state对象:除非确实需要访问底层ProseMirror状态
- 数据验证:在Server Actions中仍然需要对接收的JSON数据进行验证
- 错误处理:添加适当的错误处理逻辑,捕获可能的序列化异常
深入理解
Tiptap的文档模型是基于ProseMirror构建的,而ProseMirror内部使用了一种高效的、不可变的数据结构来表示文档状态。这种设计在编辑器操作时非常高效,但不适合直接用于网络传输。getJSON()方法实际上执行了一个转换过程,将ProseMirror的内部表示转换为标准的JSON树结构。
对于heading节点这类包含额外属性(如level)的元素,getJSON()会将其转换为标准的对象表示,例如:
{
"type": "heading",
"attrs": {
"level": 2
},
"content": [...]
}
这种格式完全符合JSON规范,可以被任何现代JavaScript环境正确处理。
总结
在将Tiptap编辑器内容传递到NextJS Server Actions时,开发者应当使用editor.getJSON()方法获取可序列化的JSON数据,而不是直接使用editor.state。这种做法不仅解决了兼容性问题,也是Tiptap官方推荐的数据获取方式。理解编辑器内部状态与可传输数据之间的区别,有助于开发者构建更健壮的富文本编辑应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00