Tiptap与NextJS 14 Server Actions的JSON序列化兼容性问题解析
问题背景
在使用Tiptap富文本编辑器与NextJS 14的Server Actions功能集成时,开发者遇到了一个常见的JSON序列化问题。当尝试将包含heading节点的编辑器内容通过Server Actions传递到后端时,系统抛出错误:"Only plain objects, and a few built-ins, can be passed to Server Actions. Classes or null prototypes are not supported"。
技术原理分析
这个问题的本质在于NextJS 14的Server Actions对传输数据的严格限制。Server Actions要求传递的数据必须是纯JavaScript对象(plain objects),不能包含类实例或具有null原型的对象。
Tiptap编辑器底层使用ProseMirror作为核心引擎,当直接使用editor.state
获取状态时,返回的是ProseMirror的文档状态对象,这个对象包含了一些特殊的类实例和原型方法,无法被NextJS的Server Actions直接序列化。
解决方案对比
推荐方案:使用getJSON方法
Tiptap专门提供了editor.getJSON()
方法来获取纯JSON格式的编辑器内容。这个方法会返回一个完全符合JSON标准的对象结构,可以被NextJS Server Actions正确处理。
const content = editor.getJSON();
// 这个content可以直接传递给Server Actions
替代方案:手动序列化
如果由于某些原因必须使用editor.state
,可以采用手动序列化的方式:
const content = JSON.parse(JSON.stringify(editor.state));
// 双重转换确保获得纯JSON对象
不过这种方法效率较低,且不是官方推荐的做法。
最佳实践建议
- 始终优先使用getJSON:这是Tiptap专门为获取可序列化内容设计的方法
- 避免直接使用state对象:除非确实需要访问底层ProseMirror状态
- 数据验证:在Server Actions中仍然需要对接收的JSON数据进行验证
- 错误处理:添加适当的错误处理逻辑,捕获可能的序列化异常
深入理解
Tiptap的文档模型是基于ProseMirror构建的,而ProseMirror内部使用了一种高效的、不可变的数据结构来表示文档状态。这种设计在编辑器操作时非常高效,但不适合直接用于网络传输。getJSON()
方法实际上执行了一个转换过程,将ProseMirror的内部表示转换为标准的JSON树结构。
对于heading节点这类包含额外属性(如level)的元素,getJSON()
会将其转换为标准的对象表示,例如:
{
"type": "heading",
"attrs": {
"level": 2
},
"content": [...]
}
这种格式完全符合JSON规范,可以被任何现代JavaScript环境正确处理。
总结
在将Tiptap编辑器内容传递到NextJS Server Actions时,开发者应当使用editor.getJSON()
方法获取可序列化的JSON数据,而不是直接使用editor.state
。这种做法不仅解决了兼容性问题,也是Tiptap官方推荐的数据获取方式。理解编辑器内部状态与可传输数据之间的区别,有助于开发者构建更健壮的富文本编辑应用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









