ClamAV正则表达式规则导致内存分配失败问题分析
问题背景
在ClamAV 1.4.1版本中,当使用特定格式的正则表达式规则时,会导致clamd服务启动失败并报出"Can't allocate memory"错误。这一问题主要出现在自定义的WDB规则文件中,特别是当规则中包含某些特定的正则表达式模式时。
问题表现
用户报告在FreeBSD 14.2系统上运行ClamAV 1.4.1时,当WDB规则文件中包含如下规则时,clamd服务无法启动:
X:.*\.safelinks\.protection\.outlook\.com([/?].*)?:.*\.?amazon\..+([/?].*)?:17-
服务启动时会显示错误信息:
LibClamAV Error: Can't load /var/db/clamav/myrules.wdb: Can't allocate memory
ERROR: Can't allocate memory
问题根源分析
经过深入排查,发现问题出在正则表达式的特定构造上。具体来说,当规则右侧使用".+"这种开放式的匹配模式时,会导致ClamAV在解析规则时尝试分配过多内存。
在正则表达式引擎处理过程中,".+"这种贪婪匹配模式在没有明确边界限制的情况下,可能会导致内存消耗急剧增加,特别是在处理复杂的URL匹配场景时。
解决方案
用户通过实验发现,将开放式的".+"匹配替换为具体的域名后缀列表可以解决此问题。例如,将原来的规则修改为:
X:.*\.safelinks\.protection\.outlook\.com([/?].*)?:.*\.?amazon\.(de|at)([/?].*)?:17-
这种修改有以下几个优点:
- 明确了匹配范围,避免了无限可能性的匹配
- 减少了正则表达式引擎的计算复杂度
- 降低了内存需求
技术建议
对于ClamAV用户编写自定义WDB规则时,建议遵循以下最佳实践:
-
避免使用过于宽泛的匹配模式:如".+"、".*"等应谨慎使用,尽量用具体的匹配内容替代
-
明确匹配边界:为匹配模式设置明确的开始和结束标记,减少不确定性
-
分段测试规则:添加新规则时应逐条测试,确保不会引起服务异常
-
考虑性能影响:复杂的正则表达式会显著增加扫描时的CPU和内存消耗
-
使用白名单机制:对于已知安全的模式,可考虑使用白名单而非黑名单
总结
这一问题揭示了ClamAV在处理某些特定正则表达式模式时存在的内存管理问题。虽然通过修改规则可以临时解决,但从长远来看,ClamAV团队需要对WDB规则解析器进行优化,以更好地处理复杂的正则表达式匹配场景,同时提供更友好的错误提示机制。
对于安全管理员而言,在编写自定义规则时应当注意规则的精确性和性能影响,避免使用可能导致资源耗尽的正则表达式构造。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









