在ollama-python项目中合理使用chat函数传递上下文的方法
2025-05-30 03:55:25作者:蔡怀权
在基于ollama-python项目开发AI对话应用时,开发者经常需要实现类似LangChain中RetrievalQA的功能,即让模型基于特定上下文内容生成回答。本文将通过一个典型场景,讲解如何正确使用ollama-python的chat函数实现这一需求。
上下文问答的核心需求
当我们需要让大语言模型基于特定文档内容回答问题时,通常会遇到以下几个技术要点:
- 需要将检索到的文档作为上下文传递给模型
- 需要明确的提示模板指导模型如何使用这些上下文
- 需要处理模型不知道答案时的应对策略
常见误区与正确实践
许多开发者容易直接将上下文拼接到提示词中,如示例中的做法:
newTemplate = template + "\n" + "Question: " + prompt + "\n" + content
这种方法虽然能工作,但不是最佳实践,因为它没有充分利用ollama-python提供的消息角色机制。
推荐实现方案
ollama-python的chat函数设计遵循标准的对话交互模式,支持三种消息角色:
- system:用于设置对话的整体行为和规则
- user:代表用户的输入
- assistant:代表模型的回复
正确的实现方式应该是:
messages = [
{
"role": "system",
"content": "Use the following pieces of context to answer the question at the end..."
},
{
"role": "user",
"content": f"Context: {content}\nQuestion: {prompt}"
}
]
这种结构化的方式有多个优势:
- 清晰分离系统指令和用户输入
- 符合ollama内部的消息处理机制
- 便于后续扩展多轮对话
- 使提示工程更加模块化
高级应用建议
对于更复杂的应用场景,可以考虑:
- 将长上下文分块处理,避免超过模型上下文窗口
- 在system提示中加入更详细的回答格式要求
- 使用few-shot示例指导模型行为
- 对模型输出进行后处理,确保符合业务需求
总结
在ollama-python项目中实现基于上下文的问答功能时,开发者应充分利用消息角色机制,而非简单拼接字符串。通过合理使用system角色设置对话规则,user角色传递具体问题和上下文,可以获得更稳定、更可控的模型输出。这种方法不仅适用于Mistral模型,也同样适用于ollama支持的其他大语言模型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355