FlashInfer项目对ARM架构的aarch64平台支持进展
随着ARM架构处理器在数据中心和高性能计算领域的广泛应用,FlashInfer项目团队近期完成了对aarch64架构的官方支持工作。这项改进使得FlashInfer推理框架能够在Grace Hopper和Blackwell等基于ARM架构的硬件平台上原生运行。
技术背景
aarch64是ARMv8-A架构的64位执行状态,广泛应用于服务器级ARM处理器。传统的x86_64架构与aarch64架构在指令集和内存模型上存在显著差异,因此需要专门编译的二进制包才能获得最佳性能。
实现方案
FlashInfer团队通过以下技术方案实现了对aarch64的支持:
-
构建系统增强:在CI/CD流水线中增加了aarch64架构的构建矩阵选项,使得每次发布都能同时生成x86_64和aarch64两种架构的预编译二进制包。
-
容器化构建环境:采用了专为aarch64优化的manylinux构建容器,包括pytorch/manylinux2_28_aarch64-builder和pytorch/manylinuxaarch64-builder,确保生成的二进制包与主流ARM Linux发行版兼容。
-
持续集成扩展:为长期维护aarch64支持,项目配置了专用的aarch64构建节点,保证未来版本都能提供ARM架构的预编译包。
技术意义
这项改进为ARM生态带来了多重好处:
-
性能优化:原生aarch64二进制包能够充分利用ARM处理器的特有指令集,相比通过模拟或兼容层运行x86代码,可获得显著的性能提升。
-
部署便利:用户不再需要从源码编译,直接安装官方提供的wheel包即可在ARM服务器上运行。
-
生态兼容:与PyTorch等主流框架的ARM版本保持兼容,便于构建完整的ARM AI推理栈。
未来展望
随着ARM架构在AI加速领域的持续发展,FlashInfer对aarch64的支持将为用户提供更多硬件选择,特别是在能效比敏感的应用场景中。项目团队将持续优化ARM版本的性能,并探索针对特定ARM处理器特性的深度优化。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









