FlashInfer项目对ARM架构的aarch64平台支持进展
随着ARM架构处理器在数据中心和高性能计算领域的广泛应用,FlashInfer项目团队近期完成了对aarch64架构的官方支持工作。这项改进使得FlashInfer推理框架能够在Grace Hopper和Blackwell等基于ARM架构的硬件平台上原生运行。
技术背景
aarch64是ARMv8-A架构的64位执行状态,广泛应用于服务器级ARM处理器。传统的x86_64架构与aarch64架构在指令集和内存模型上存在显著差异,因此需要专门编译的二进制包才能获得最佳性能。
实现方案
FlashInfer团队通过以下技术方案实现了对aarch64的支持:
-
构建系统增强:在CI/CD流水线中增加了aarch64架构的构建矩阵选项,使得每次发布都能同时生成x86_64和aarch64两种架构的预编译二进制包。
-
容器化构建环境:采用了专为aarch64优化的manylinux构建容器,包括pytorch/manylinux2_28_aarch64-builder和pytorch/manylinuxaarch64-builder,确保生成的二进制包与主流ARM Linux发行版兼容。
-
持续集成扩展:为长期维护aarch64支持,项目配置了专用的aarch64构建节点,保证未来版本都能提供ARM架构的预编译包。
技术意义
这项改进为ARM生态带来了多重好处:
-
性能优化:原生aarch64二进制包能够充分利用ARM处理器的特有指令集,相比通过模拟或兼容层运行x86代码,可获得显著的性能提升。
-
部署便利:用户不再需要从源码编译,直接安装官方提供的wheel包即可在ARM服务器上运行。
-
生态兼容:与PyTorch等主流框架的ARM版本保持兼容,便于构建完整的ARM AI推理栈。
未来展望
随着ARM架构在AI加速领域的持续发展,FlashInfer对aarch64的支持将为用户提供更多硬件选择,特别是在能效比敏感的应用场景中。项目团队将持续优化ARM版本的性能,并探索针对特定ARM处理器特性的深度优化。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00