FlashInfer项目对ARM架构的aarch64平台支持进展
随着ARM架构处理器在数据中心和高性能计算领域的广泛应用,FlashInfer项目团队近期完成了对aarch64架构的官方支持工作。这项改进使得FlashInfer推理框架能够在Grace Hopper和Blackwell等基于ARM架构的硬件平台上原生运行。
技术背景
aarch64是ARMv8-A架构的64位执行状态,广泛应用于服务器级ARM处理器。传统的x86_64架构与aarch64架构在指令集和内存模型上存在显著差异,因此需要专门编译的二进制包才能获得最佳性能。
实现方案
FlashInfer团队通过以下技术方案实现了对aarch64的支持:
-
构建系统增强:在CI/CD流水线中增加了aarch64架构的构建矩阵选项,使得每次发布都能同时生成x86_64和aarch64两种架构的预编译二进制包。
-
容器化构建环境:采用了专为aarch64优化的manylinux构建容器,包括pytorch/manylinux2_28_aarch64-builder和pytorch/manylinuxaarch64-builder,确保生成的二进制包与主流ARM Linux发行版兼容。
-
持续集成扩展:为长期维护aarch64支持,项目配置了专用的aarch64构建节点,保证未来版本都能提供ARM架构的预编译包。
技术意义
这项改进为ARM生态带来了多重好处:
-
性能优化:原生aarch64二进制包能够充分利用ARM处理器的特有指令集,相比通过模拟或兼容层运行x86代码,可获得显著的性能提升。
-
部署便利:用户不再需要从源码编译,直接安装官方提供的wheel包即可在ARM服务器上运行。
-
生态兼容:与PyTorch等主流框架的ARM版本保持兼容,便于构建完整的ARM AI推理栈。
未来展望
随着ARM架构在AI加速领域的持续发展,FlashInfer对aarch64的支持将为用户提供更多硬件选择,特别是在能效比敏感的应用场景中。项目团队将持续优化ARM版本的性能,并探索针对特定ARM处理器特性的深度优化。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00