Undici 库中 Agent 池监控与 Prometheus 集成方案
2025-06-01 14:18:45作者:傅爽业Veleda
背景介绍
在现代 Node.js 应用中,高效的 HTTP 客户端是系统性能的关键。Undici 作为 Node.js 官方推出的高性能 HTTP/1.1 客户端,其内置的连接池机制(Agent 和 Pool)对于管理 HTTP 连接至关重要。然而,如何有效监控这些连接池的状态,特别是与 Prometheus 等监控系统集成,成为了开发者面临的实际挑战。
Undici 连接池架构解析
Undici 的核心连接管理通过 Agent 和 Pool 两个类实现:
- Agent 类:作为顶层管理者,根据请求的 origin 自动创建和管理底层连接
- Pool 类:实际维护一组到特定 origin 的连接,当配置的连接数大于1时创建
关键点在于,Agent 内部维护了一个客户端映射表(kClients),但默认不对外暴露这些 Pool 实例的详细信息。
监控方案设计
方案一:工厂函数拦截
通过 Agent 的 factory 选项可以拦截 Pool 创建过程:
const agent = new Agent({
factory(origin, opts) {
const pool = new Pool(origin, opts);
// 将pool注册到监控系统
monitorSystem.registerPool(origin, pool);
return pool;
}
});
这种方案的优点在于:
- 实现简单直接
- 可以完全控制 Pool 的创建过程
- 能够获取到原始的 origin 信息
方案二:内置统计暴露
更优雅的方式是让 Agent 本身提供统计接口,这需要修改 Undici 源码:
- 为 Agent 添加 stats 属性,聚合所有 Pool 的统计信息
- 考虑添加 originStats(origin) 方法获取特定 origin 的统计
- 统一统计接口格式,便于监控系统消费
示例实现:
class Agent {
get stats() {
const stats = {};
for (const [origin, client] of this[kClients]) {
if (client.stats) {
stats[origin] = client.stats;
}
}
return stats;
}
}
Prometheus 集成实践
基于上述方案,可以构建 Prometheus 导出器:
-
指标设计:
- undici_pool_connections_active:活跃连接数
- undici_pool_connections_idle:空闲连接数
- undici_pool_requests_queued:排队请求数
- undici_pool_errors_total:错误计数
-
采集实现:
- 定期从 Agent.stats 获取数据
- 按 origin 作为标签区分不同目标
- 转换为 Prometheus 支持的格式
-
最佳实践:
- 设置合理的采集频率(如15-30秒)
- 对高频变更的指标考虑使用Gauge类型
- 为关键指标设置告警规则
性能考量
在实现监控时需要注意:
- 统计收集应尽量轻量,避免影响请求处理性能
- 对于大规模部署,考虑采样或聚合统计
- Prometheus 抓取间隔应大于统计更新频率
- 内存使用监控,避免统计数据占用过多内存
未来改进方向
Undici 可以进一步优化监控支持:
- 标准化统计接口,包括 Client 和 Pool
- 提供生命周期事件,如 Pool 创建/销毁
- 内置常见监控系统集成适配器
- 详细的统计文档和示例
总结
Undici 作为高性能 HTTP 客户端,其连接池监控对于系统稳定性至关重要。通过工厂函数拦截或增强 Agent 统计接口,开发者可以有效地将连接池状态集成到 Prometheus 等监控系统中。随着 Undici 的持续发展,预计其监控支持将更加完善,为 Node.js 应用的运维提供更强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355