Scribe项目中ResponseCalls策略仅应用于GET请求的配置方法
2025-07-05 14:58:29作者:咎竹峻Karen
在Laravel API文档生成工具Scribe的使用过程中,ResponseCalls策略是一个非常有用的功能,它能够自动调用API端点并捕获响应作为文档示例。然而,在某些情况下,我们可能希望限制这种自动调用行为,特别是对于非GET请求(如POST、PUT、DELETE等),因为这些请求可能会对生产数据造成不可逆的影响。
问题背景
默认情况下,Scribe的ResponseCalls策略会尝试调用所有类型的API端点来获取响应示例。这在开发环境中可能没有问题,但在某些场景下会带来风险:
- 修改数据的请求(如创建订单、发送邮件等)会被实际执行
- 删除操作会导致真实数据被移除
- 可能触发一些无法回滚的业务流程
解决方案
Scribe提供了配置选项来限制ResponseCalls策略仅应用于特定类型的HTTP请求。以下是推荐的配置方法:
'strategies' => [
'responses' => [
Strategies\Responses\UseResponseAttributes::class,
Strategies\Responses\UseTransformerTags::class,
Strategies\Responses\UseApiResourceTags::class,
Strategies\Responses\UseResponseTag::class,
Strategies\Responses\UseResponseFileTag::class,
[
Strategies\Responses\ResponseCalls::class,
[
'only' => ['GET *'],
'config' => [
'app.debug' => false,
],
],
],
],
],
配置说明
-
only参数:
'GET *'表示仅对GET请求应用ResponseCalls策略- 星号(*)是通配符,表示匹配所有GET端点
- 也可以指定具体路径,如
'GET users/*'
-
debug模式配置:通过
config选项可以临时修改应用配置- 示例中关闭了debug模式,避免在文档中显示调用堆栈
- 这在生产环境文档生成时特别有用
注意事项
-
确保不要将
config选项放在路由配置的apply部分,而应该直接放在策略配置中 -
对于确实需要示例的非GET请求,可以考虑:
- 使用
@response标签手动提供示例 - 创建专门的测试端点用于文档生成
- 使用API资源或转换器来生成模拟响应
- 使用
-
在团队协作环境中,建议将这种配置纳入项目标准,避免意外执行危险操作
最佳实践
- 在CI/CD流程中生成文档时,使用专门的测试数据库
- 对于关键业务端点,优先考虑手动提供响应示例
- 定期审查文档生成配置,确保安全策略得到正确应用
通过合理配置ResponseCalls策略,我们可以在保证文档质量的同时,避免对生产环境造成不必要的影响,实现安全高效的API文档生成流程。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92