databall 的安装和配置教程
2025-05-20 15:26:39作者:翟江哲Frasier
1. 项目基础介绍和主要编程语言
databall 是一个开源项目,旨在通过数据分析预测NBA比赛的胜者。该项目将数据科学和体育结合,使用从NBA官方网站抓取的统计数据和从covers.com获取的赔率信息,利用机器学习算法进行胜负预测。项目的主要编程语言是 Python。
2. 项目使用的关键技术和框架
项目中使用了以下关键技术和框架:
- Scrapy: 一个强大的Python爬虫框架,用于从covers.com网站爬取赔率信息。
- nba_api: 一个用于访问NBA统计数据的Python库。
- scikit-learn: 一个流行的机器学习库,用于构建预测模型。
- SQLite: 一个轻量级的数据库,用于存储项目数据。
- Jupyter Notebook: 用于数据分析的交互式计算环境。
- GitHub Pages: 用于展示项目文档和报告的静态网站托管服务。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装之前,请确保您的计算机上已经安装了以下环境和工具:
- Python (建议版本3.6或更高)
- pip (Python的包管理器)
- git (版本控制工具)
安装步骤
-
克隆项目仓库
打开命令行(终端),使用以下命令克隆项目仓库到本地:
git clone https://github.com/klane/databall.git cd databall -
安装项目依赖
在项目目录中,使用pip安装项目所需的Python包。首先安装
requirements.txt中列出的所有依赖:pip install -r requirements.txt -
设置数据库
项目使用SQLite数据库存储数据。你需要创建一个新的SQLite数据库文件,并设置好相应的表结构。这通常在项目中的某个Python脚本中完成,你需要运行相应的脚本来创建数据库和表。
-
运行爬虫
使用Scrapy框架运行爬虫以获取数据。进入
covers目录,并运行爬虫:cd covers scrapy crawl covers_spider确保爬虫正确运行,并将数据保存到SQLite数据库中。
-
进行数据分析
利用
notebooks目录中的Jupyter笔记本进行数据分析。你可以直接在Jupyter Notebook环境中打开这些.ipynb文件并执行其中的代码。 -
查看项目报告
如果需要查看项目报告,可以构建并访问
GitHub Pages。首先,确保你有GitHub Pages设置在项目的gh-pages分支。然后,可以按照docs目录中的指南来构建和部署文档。cd docs jekyll build构建完成后,你可以在本地预览报告。
以上步骤为databall项目的基本安装和配置流程。根据实际需求,可能还需要进一步的配置和调整。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
215
235
暂无简介
Dart
662
152
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
253
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
297
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编程语言开发者文档。
59
818