GLM-4-9B-Chat-1M模型在LongBench-Chat基准测试中的复现实践
2025-06-03 21:54:56作者:傅爽业Veleda
背景介绍
GLM-4-9B-Chat-1M是清华大学知识工程组(KEG)开发的大规模预训练语言模型,特别针对长上下文理解任务进行了优化。该模型在LongBench-Chat基准测试中取得了7.82分的优异成绩,但社区用户在实际复现过程中遇到了挑战。
复现挑战分析
在模型评估过程中,用户主要遇到了两个关键问题:
- 评估脚本适配问题:原始评估脚本未正确识别GLM系列模型的chat模板,导致评估分数偏低(5.46分)
- 推理参数配置问题:使用vLLM后端推理时,虽然分数有所提升(7.22分),但仍与官方报告存在差距
解决方案详解
评估脚本适配
核心问题在于评估脚本中的模型识别逻辑。原始代码仅匹配"chatglm"关键词,而GLM-4系列模型使用"glm"作为标识。修改评估脚本中的条件判断后,模型能够正确应用chat模板,评估分数提升至7.42分,接近官方报告水平。
关键参数配置
通过分析,我们发现影响评估结果的关键因素包括:
- 温度参数(temperature):建议设置为0.95
- 停止token设置:需包含[151329, 151336, 151338]
- 最大模型长度:设置为120000以支持长上下文
技术要点总结
- 模型适配:对于GLM系列新模型,需注意命名规范变化对评估脚本的影响
- 评估一致性:GPT-4作为评估器存在一定随机性,7.42分与7.82分的差异在合理范围内
- 推理优化:使用vLLM后端时,需确保参数配置与官方推荐一致
实践建议
对于希望在LongBench-Chat基准上复现GLM-4-9B-Chat-1M性能的研究者,建议:
- 使用官方推荐的评估脚本
- 仔细检查模型标识匹配逻辑
- 保持推理参数与官方配置一致
- 多次运行取平均值以降低评估波动
通过以上实践,研究者可以更准确地评估模型在长上下文任务中的真实性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322