Harvester集群升级故障排查与解决方案深度解析
2025-06-14 05:44:52作者:段琳惟
问题背景
在Harvester v1.4.2升级至v1.5.0的过程中,用户遇到了节点升级停滞的问题。具体表现为3节点集群中2个节点成功升级,但第3个节点(harvester4)长期停留在"images preloaded"状态。本文将深入分析该问题的技术细节,并提供完整的解决方案。
问题诊断过程
初始状态分析
通过检查集群状态,我们发现以下异常情况:
- Kubernetes节点与机器资源不匹配:虽然集群只有3个运行中的节点,但存在5个machines.cluster.x-k8s.io资源和4个nodes.devices.harvesterhci.io资源
- 存在已删除节点(harvester2)的残留资源
- 升级控制器状态显示harvester4节点卡在"Images preloaded"阶段
关键发现
-
资源不一致问题:
- 集群中存在已删除节点的残余Machine资源
- 这些残留资源可能导致升级控制器状态判断错误
-
节点升级停滞原因:
- 节点harvester4的OS版本仍显示为v1.4.2
- 升级流程在drain阶段出现异常,post-drain钩子未正确执行
-
支持包分析问题:
- 多次生成的支持包缺少关键yamls目录
- 这可能是由于证书过期导致的收集工具功能异常
解决方案实施
第一步:清理残留资源
-
删除无效的Machine资源:
kubectl delete machines.cluster.x-k8s.io custom-1d1de6c3ae63 -n fleet-local kubectl delete machines.cluster.x-k8s.io custom-9626842a1f91 -n fleet-local
-
清理已删除节点的设备资源:
kubectl delete nodes.devices.harvesterhci.io harvester2
第二步:修复drain状态
-
使用post-drain.sh脚本修复harvester4节点的drain状态:
./post-drain.sh harvester4
该脚本会:
- 定位节点对应的Machine资源
- 检查当前的drain状态
- 修复缺失的post-drain钩子状态
第三步:重置升级流程
-
强制删除卡住的升级资源:
kubectl patch upgrade.harvesterhci.io hvst-upgrade-zjft7 -n harvester-system \ --type merge -p '{"metadata":{"finalizers":[]}}' kubectl delete upgrade.harvesterhci.io hvst-upgrade-zjft7 -n harvester-system
-
重新触发升级流程
技术原理深度解析
Harvester升级机制
Harvester的升级过程分为几个关键阶段:
-
准备阶段:
- 检查升级镜像可用性
- 准备系统服务更新
-
节点升级阶段:
- 逐个节点执行升级
- 包含pre-drain、drain和post-drain三个子阶段
-
完成阶段:
- 验证所有组件版本
- 更新集群状态
问题根因分析
本次升级失败的根本原因在于:
-
资源状态不一致:之前删除节点时未完全清理相关资源,导致升级控制器状态判断错误
-
drain流程中断:节点harvester4的post-drain钩子未正确执行,使升级流程无法继续
-
证书问题影响诊断:过期的证书导致支持包收集不完整,增加了问题诊断难度
最佳实践建议
-
升级前检查:
- 确保所有节点状态健康
- 验证证书有效性
- 检查资源一致性
-
升级过程监控:
- 实时关注每个节点的升级状态
- 定期生成完整支持包
-
问题处理流程:
- 遇到升级卡顿时,首先检查drain状态
- 使用专用工具分析升级状态
- 必要时寻求社区支持
总结
Harvester集群升级是一个复杂的过程,涉及多个组件和状态的协调。通过本文的分析和解决方案,我们不仅解决了特定的升级卡顿问题,也深入理解了Harvester的升级机制。对于运维人员来说,掌握这些诊断和修复技术,能够有效提高集群升级的成功率,确保业务连续性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133