Ivy Wallet 支出报告功能优化:基于标签排除的统计分析
2025-06-27 20:00:50作者:柯茵沙
在个人财务管理应用中,支出报告功能是帮助用户分析消费行为的重要工具。Ivy Wallet 项目近期收到了一项功能改进建议,旨在增强其报告功能的灵活性和实用性。本文将深入探讨这项改进的技术实现思路和业务价值。
需求背景分析
当前 Ivy Wallet 的支出报告功能允许用户基于标签进行筛选统计,但在实际使用中存在一个痛点:大多数用户的日常消费并不添加标签,只有当需要特别标记某些特殊支出时才会使用标签功能。这就导致了一个统计偏差问题——当用户想查看"常规消费"时,现有的标签筛选机制无法有效排除那些被特别标记的"非常规消费"。
技术实现方案
核心功能设计
实现"排除标签"功能需要在现有报告筛选器基础上扩展:
- 在筛选器界面添加"排除标签"选择区域
- 修改报告生成逻辑,在数据处理层增加标签排除条件
- 确保与现有筛选条件的逻辑兼容性
数据查询优化
在数据库查询层面,需要构建如下逻辑:
SELECT * FROM transactions
WHERE
(其他筛选条件)
AND (tag_id NOT IN (排除标签列表))
对于使用Room等ORM框架的情况,可以构建动态查询条件:
@Query("SELECT * FROM transactions WHERE type = 'expense' AND (:tags IS NULL OR tag_id IN (:tags)) AND (:excludeTags IS NULL OR tag_id NOT IN (:excludeTags))")
fun getExpensesByTags(tags: List<String>?, excludeTags: List<String>?): List<Transaction>
用户界面改进
UI层需要新增一个与"包含标签"并行的"排除标签"选择器,保持界面一致性:
- 使用相同的标签选择组件
- 明确区分包含/排除两种模式
- 提供清晰的视觉提示
业务价值分析
这项改进将带来以下实际价值:
- 更准确的常规消费分析:用户可以轻松排除那些特殊的一次性支出,得到日常消费的真实情况
- 灵活的对比分析:通过组合包含和排除条件,可以进行更细粒度的消费分类比较
- 降低用户使用门槛:不需要用户为每笔交易都添加标签,减轻了数据录入负担
技术挑战与解决方案
性能考量
当用户选择大量排除标签时,查询性能可能受到影响。解决方案包括:
- 对tag_id字段建立索引
- 限制一次性可排除的标签数量
- 对大数据集采用分页加载
数据一致性
需要确保:
- 标签删除时同步更新排除条件
- 事务处理时保持筛选条件的原子性
- 在多设备同步场景下正确处理排除条件
未来扩展方向
基于此功能,可以进一步扩展:
- 保存常用排除组合为预设
- 支持基于排除标签的预算设置
- 开发对比报告功能,比较包含/排除特定标签的消费差异
这项功能改进虽然看似简单,但能显著提升Ivy Wallet在消费分析方面的实用性和灵活性,是财务管理工具向智能化发展的重要一步。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217